

FSO 用户指南

	许可协议

	欢迎

	FSO简介

	依赖软件

	FSO运行

	故障处理

欢迎

	欢迎
	前言

	服务器要求

	可信度

FSO简介

	WRF FSO 简介

依赖软件

	安装
	Airflow安装

	Singularity安装

	运行目录

FSO运行

	教程
	数据准备

	DAG加载

	Airflow启动

	FSO运行流程

	FSO系统网页监控

	FSO结果后处理

故障处理

	常见故障处理
	常见故障处理

欢迎

前言

FSO（Forecast sensitivity to observation）即预报对观测的敏感性，最初由MMM / NCAR开发，是一种基于伴随理论的用于评估观测对同化系统和数值预报贡献的方法，或者说，观测对预测误差减少的影响。

本手册介绍的是为中国气象局气象探测中心搭建的一套预报误差对观测的敏感性分析系统(FSO)，更新至v2.0版本，产品包括全国15公里分辨率逐12小时的预报误差对观测的敏感性分析。系统采用Singularity Docker容器技术对FSO软件进行了封装，以便于系统移植与管理。同时采用Python Airflow流程管理软件对整个业务作业进行可视化管理。该系统能实时监测观测系统、数值预报和同化系统，并为观测系统的调整、观测数据来源的评估提供依据。

[image: ../_images/welcome.gif]

服务器要求

PHP [http://php.net/] version 7.0.15 or newer is required, with the intl extension installed.

A database is required for most web application programming.
Currently supported databases are:

	MySQL (5.1+) via the MySQLi driver

	PostgreSQL via the Postgre driver

	Python3 external packages: pendulum

Not all of the drivers have been converted/rewritten for FSO.
The list below shows the outstanding ones.

	MySQL (5.1+) via the pdo driver

	Oracle via the oci8 and pdo drivers

	PostgreSQL via the pdo driver

	MS SQL via the mssql, sqlsrv (version 2005 and above only) and pdo drivers

	SQLite via the sqlite (version 2), sqlite3 (version 3) and pdo drivers

	CUBRID via the cubrid and pdo drivers

	Interbase/Firebird via the ibase and pdo drivers

	ODBC via the odbc and pdo drivers (you should know that ODBC is actually an abstraction layer)

可信度

该FSO最初由 MMM/NCAR [https://www.mmm.ucar.edu/] 开发。该框架是为实际业务运行而编写的，其中许多原始脚本、代码和子系统都来自于 WRF Data Assimilation System [http://www2.mmm.ucar.edu/wrf/users/wrfda/] 的代码库中借鉴而来的。多年来，它一直由北京朗润知天科技有限公司和一群热情的科学家和研究人员开发和维护。

WRF FSO 简介

WRF（Weather Research And Forecast Model) FSO系统包括预报模式（WRF）及其伴随（WRFPLUS）、变分数据同化系统（WRFDA）和诊断、绘图工具（TOOLS)。该系统框架和流程如下：

[image: ../_images/WRF-FSO.png]
1.观测场与背景场进入WRFDA得到分析场，从分析场和背景场出发，分别进行相同时效的非线性前向预报。

2.计算两组预报场与真实场的预报误差。根据这两组预报误差的差异定义预报准确度F（通常为干总能量）。

3.计算预报准确度对预报场（分别来自背景场和分析场）的梯度，利用伴随模式WRFPLUS分别进行两次反向积分，得到预报误差对分析变量的敏感度。

4.预报误差对分析变量的敏感性结果作为输入场，进入WRFDA的伴随模式，计算预报误差对观测的敏感性，它涉及观测算子的伴随、观测误差协方差及Hessian矩阵的逆，在最小化过程中采取Lanczos迭代方法获得。

参考网页：

<http://www2.mmm.ucar.edu/wrf/users/wrfda/Tutorials/2012_July/docs/README_FSO_v3.3.pdf>

<http://www2.mmm.ucar.edu/wrf/users/wrfda/Tutorials/2014_July/docs/WRFDA_sensitivity.pdf>

安装

包括以下几个部分:

	安装Airflows, 介绍Airflow的安装

	安装Singularity, 介绍Singularity的安装

	准备运行目录, 介绍运行环境的准备。

	@startuml

	Alice -> Bob: Authentication Request
Bob –> Alice: Authentication Response

Alice -> Bob: Another authentication Request
Alice <– Bob: another authentication Response

@enduml

Airflow安装

Airflow是一种用编程方式编写以安排和监控工作流程的平台。

安装

>export AIRFLOW_HOME=/指定路径/airflow #设置环境变量airflow主路径
>pip install airflow #安装

安装完成后

cd $AIRFLOW_HOME
>vim airflow.cfg

主要修改以下参数

airflow_home = /指定路径/airflow #airflow主路径
dags_folder = /指定路径/airflow/dags #dag python文件目录
executor = LocalExecutor #先使用local模式
base_log_folder = /指定路径/airflow/logs #主日志目录
sql_alchemy_conn = postgresql+psycopg2://airflow:fso2018@localhost #指定元数据存储方式，目前采用Postgresql

[webserver]
authenticate = True
filter_by_owner = true
base_url = http://localhost:8080
web_server_host = XXX.XXX.XXX.XXX #web server 机器IP
base_url = http://XXX.XXX.XXX.XXX:8080 #web server 机器IP:PORT

初始化数据库

>airflow initdb

Airflow基本概念

DAG (Directed Acyclic Graph)

它展示的是任务的集合，并描述了任务之间的依赖关系，以及整个DAG的一些属性，如起止时间、执行周期、重试策略等等。通常一个.py文件就是一个DAG。也可以理解为这就是一个完整的shell脚本，只是它可以保证脚本中的命令有序执行。

task 任务

它就是DAG文件中的一个个Operator，描述了具体的操作步骤。

Operator 执行器

airflow定义了很多的 Operator，通常一个操作就是一个特定的Operator，比如调用shell命令要用BashOperator，调用python函数要用PythonOperator，发邮件要用EmailOperator，连SSH要用SSHOperator。社区还在不断地贡献新的 Operator。

ds 日期

前面的脚本里用到了{{ ds }}变量，每个DAG在执行时都会传入一个具体的时间（datetime对象），这个ds就会在 render 命令时被替换成对应的时间。

Important

这里要特别强调一下，对于周期任务，airflow传入的时间是上一个周期的时间（划重点），比如你的任务是每天执行，那么今天传入的是昨天的日期，如果是周任务，那传入的是上一周今天的值。

Macros

脚本里如果需要不同的时间格式或者不同的时间段怎么办，这时候就到Macro出场了，airflow本身提供了几种时间格式，比如ds_nodash，顾名思义就是不带短横-的时间格式，而且还会有一些相关的函数可以直接调用，比如ds_add可以对时间进行加减。

参考网页

<https://airflow.incubator.apache.org/tutorial.html>

Singularity安装

实况分析系统采用Singularity容器技术进行封装，可以有效隔离依赖软件环境的搭建、环境变量的配置等细节。

安装

业务工作站推荐Linux操作系统，Ubuntu/centos发行版本,以centos为例：

#安装或更新依赖

sudo yum update && \
sudo yum groupinstall 'Development Tools' && \
sudo yum install libarchive-devel

#下载并安装最新版本

git clone https://github.com/singularityware/singularity.git
cd singularity
./autogen.sh
./configure --prefix=/usr/local --sysconfdir=/etc
make
sudo make install

导入镜像文件

工作站中应存在FSO Singularity镜像文件fso3.simg。

>ls -al fso3.simg

参考网页

<http://singularity.lbl.gov/docs-installation>

运行目录

FSO目录结构

/home/zwtd/FSO

├── china_FSO #FSO主目录

│ ├── be

│ ├── fc

│ ├── fsoplot

│ ├── ob

│ ├── plot

│ ├── rc

│ ├── run

├── china_static

├── china_working

├── scripts

脚本放置

cd /home/zwtd/FSO/china_FSO/be
> be.d01.dat

cd /home/zwtd/FSO/china_FSO/fsoplot
> data2pg.py
 drawfso.py
 drawlev.py
 drawmap.py
 drawvar.py
 drawvarlev.py
 sql.py
 timepath.py
 chn.ncl
 fso.ncl
 map.ncl
 var.ncl
 varmap.ncl

cd /home/zwtd/FSO/china_FSO/run
>wrapper_run_fso_v3.4.ksh\

cd /home/zwtd/FSO/china_static
> namelist.input
 namelist.wps
 namelist.obsproc
 geo_em.d01.nc
 Vtable.GFS
 Vtable.GFS_0p5
 QNWFA_QNIFA_Monthly_GFS
 obserr.txt

cd /home/zwtd/FSO/scripts
> fso_2pg.py
 fso_adj.py
 fso_check_ana.py
 fso_check_icbc.py
 fso_check_obs.py
 fso_da.py
 fso_err.py
 fso_forcing.py
 fso_impact.py
 fso_nl.py
 fso_plot.py
 china_common.py
 wrf_check_gfs.py
 wrf_obsproc.py
 wrf_prod.py
 wrf_real_ana.py
 wrf_real_icbc.py
 wrf_wps.py

教程

该教程包括以下几个部分:

	FSO所需数据, 介绍运行FSO需要准备的数据。

	加载DAGs, 介绍DAG的加载与修改。

	启动Airflow, 介绍Airflow启动。

	FSO运行流程, 介绍FSO系统运行流程。

	FSO业务系统监控, 介绍FSO业务系统网页监控。

	产品的图形输出, 介绍FSO产品的输出和目录。

数据准备

FSO系统所需数据有观测数据、初始数据和真实场数据。目前已有的观测数据为中国观测站点资料，初始场和真实场均来自0.25°× 0.25°全球系统预报和分析资料（GFS）。

GFS数据

至少需要每日UTC00时和UTC12时的GFS数据，且每个时刻至少存放该时刻分析场(*.f000)及其12、24、36、48、60（f012,f024,..,f060)时效的预报场。

GFS存放路径：/data1/raw/gfs/gfs.yyyymmddhh

 cd GFS_PATH

> gfs.2018080112 gfs.2018080200 gfs.2018080212 gfs.2018080300

 cd gfs.2018080112

> gfs.t00Z.pgrb2.0p25.f000 gfs.t00Z.pgrb2.0p25.f012 gfs.t00Z.pgrb2.0p25.f024
 gfs.t00Z.pgrb2.0p25.f036 gfs.t00Z.pgrb2.0p25.f048 gfs.t00Z.pgrb2.0p25.f060

观测数据

目前已有的观测资料包括：

[image: ../_images/obs.png]

1.观测资料获取

观测资料都采用crontab定时获取。

1.1 地面观测资料

> */15 * * * * bash -c "python3.6 get-metar.py --root-dir /home/data/raw/cimiss --time $(date -u +\%Y\%m\%d\%H\%M --date '-30 minute')" 1> /dev/null

资料以xml文件存储，每15分钟一个文件：

> cd SURF_CHN_MAIN_MIN

> 201810282030.xml 201810282045.xml 201810282100.xml
 201810282115.xml 201810282130.xml 201810282145.xml

1.2 探空资料

> 20 8,20 * * * bash -c "python3.6 get-sounding.py --root-dir /home/data/raw/cimiss --time $(date -u +\%Y\%m\%d\%H\%M --date '-20 minute')" 1> /dev/null

探空资料以xml文件存储，每12小时一个文件:

> cd UPAR_CHN_MUL_FTM

> 201810281200.xml 201810290000.xml 201810291200.xml
 201810300000.xml 201810301200.xml 201810310000.xml

1.3 风廓线雷达资料

> */15 * * * * bash -c "source python3.6 get-profiler.py --root-dir /home/data/raw/profiler --date $(date -u +\%Y\%m\%d\%H\%M --date '-30 minute')" 1> /dev/null

风廓线资料以txt文件存储，使用的半小时平均风廓线数据，每30分钟一个文件：

> cd profiler/20181028

> Z_RADA_59981_WPRD_MOC_NWQC_HOBS_LC_QI_20181028110000.TXT
 Z_RADA_59981_WPRD_MOC_NWQC_HOBS_LC_QI_20181028113000.TXT

2.资料转LITTLE_R格式

观测数据需存储为WRFDA可识别的little_r格式ob.ascii或prebufr格式ob.bufr。

> 0 12,00 * * * bash -c "python3.6 /home/data/raw/little_r/convert_cimiss_2_littler.py"

观测数据存放路径：/data1/input/little_r/yyyymmddhh

cd OBDATA_PATH

> 2018080112 2018082000 2018080212 2018080300

cd 2018080112

> ob.ascii

DAG加载

DAG加载

cd $AIRFLOW_HOME/dags

将DAG python脚本（fso-prod-v2.0.py,wrf-prod-v2.0.py)放入该目录下

ls -all

> fso-prod-v2.0.py wrf-prod-v2.0.py

DAG基本构架

以wrf-prod-v2.0.py为例，DAG基本框架为：

vim wrf-prod-v2.0.py

>default_args = {
'owner': 'airflow',
'depends_on_past': False,
'start_date': datetime(2018,8,01), #任务开始执行的日期#
'end_date': datetime(2030, 12, 31), #任务开始终止的日期#
 }

> dag = DAG(
'wrf-prod-v2.0', #dag_id
default_args=default_args,
user_defined_macros={ 'npe': 12 }, #运行该DAG所占节点数
schedule_interval='00 06,18 * * *') #任务启动时间：每天北京时间06时，18时

> check_gfs_command ="""
 ulimit -s unlimited \
 && cd /home/FSO \ #FSO主目录
 && SINGULARITYENV_CURR_DATE={{ ts_nodash }} \
 singularity exec -e -B china_FSO:/FSO3.4 -B china_working:/gjx_working -B china_static:/gjx_static -B /data1/raw/gfs:/gfs fso3.simg ./scripts/wrf_check_gfs.py""" # 将主机路径与容器路径绑定，冒号前是主机目录路径，冒号后面是容器目录路径；运行wrf_check_gfs.py

参考网页

<http://airflow.incubator.apache.org/tutorial.html>

Airflow启动

启动

Airflow后台运行程序包括

>airflow webserver #启动调度器

>airflow scheduler #启动后端网页

调度器（Scheduler），负责在指定时间运行作业。

管理页面后端服务器（Webserver），负责向前端（浏览器）提供HTML服务。

Airflow基础命令

airflow的所有执行操作都需要在命令行下完成，界面只能看任务的依赖，包括任务执行状态，但如果任务失败了，还是要在命令行下执行。
airflow的命令总的来说很符合直觉，常用的有如下几个：

	test： 用于测试特定的某个task，不需要依赖满足

	run: 用于执行特定的某个task，需要依赖满足

	backfill: 执行某个DAG，会自动解析依赖关系，按依赖顺序执行

	unpause: 将一个DAG启动为例行任务，默认是关的，所以编写完DAG文件后一定要执行这和要命令，相反命令为pause

	scheduler: 这是整个 airflow 的调度程序，一般是在后台启动

	clear: 清除一些任务的状态，这样会让scheduler来执行重跑

从上面的命令顺序也可以看出，通常的执行顺序是这样：编写完DAG文件，直接用backfill命令测试整个DAG是否有问题，如果单个任务出错，查看log解决错误，这时可以用test来单独执行，如果有依赖关系就用run执行，问题解决后就用unpause打开周期执行， scheduler 是在后台默认打开的。之后运行过程中发现需要重跑则用clear命令。

举例

	

>airflow test dag_id task_id execution_date

用于测试该dag_id中的task_id这一任务，并给定测试时间 例如：

>airflow test fso-prod-00Z-v2.0 2-3-adj-backward 2018-08-16T08:00:00

	

>airflow backfill dag_id -s start_date -e end_date

用于反算和补充某个时刻或某段时间的dag流程,注意的是start_date和end_date之间必须要相差一天,例如：

>airflow backfill fso-prod-00Z-v2.0 -s 2018-08-16 -e 2018-08-17

FSO运行流程

FSO由两个DAG共同完成：wrf-prod-v2.0与fso-prod-v2.0。

wrf-prod-v2.0：为fso-prod-v2.0准备初始场、真实场及观测数据，由wrf-prod-v2.0.py脚本控制。

fso-prod-v2.0：执行FSO、结果输出及绘图，由fso-prod-v2.0.py脚本控制。

二者关系

[image: ../_images/FSO-workflow.png]

wrf-prod-v2.0

每天运行2次，分别准备UTC00时和UTC12时的背景场及观测数据。每一步骤对应一个外部python脚本。

	wrf_check-gfs

检测运行时刻GFS资料是否到位(gfs.*.f012,gfs.*.f024,…,gfs.*.f060)

	wrf_obsproc

检测观测资料是否已到位；进行观测资料前处理，得到WRFDA可以读取的观测文件ob.ascii,存放在/china_FSO/ob/路径下。

	wps-prod

运行wps，解码数据，提供地形等。

	real-ana-prod

由该时刻GFS分析场(gfs.*.f000)得到wrfinput_d01.ana,用作计算预报误差的真实场，存放在/china_FSO/rc/路径下。

	real-icbc-prod

将GFS-36小时预报场(gfs.*.f036)用作同化系统的背景场wrfinput_d01,存放于/china_FSO/rc/。

	wrf-prod

以real-icbc-prod得到的wrfinput_d01作为初始场，向前预报24小时，长时间的计算结果可用于统计背景误差协方差等

fso-prod-v2.0

	check-obs, check-icbc, check-ana

检查观测ob.ascii、同化背景场wrfinput_d01、真实场wrfinput_d01.ana是否生成。

	1-data-assimialtion

三维变分同化，得到分析场wrfvar_output,保存为/china_FSO/fc/wrfinput_d01。

	2-1-nl-forecast

分别从Xa，Xb开始进行非线性积分12小时得到预报场Xfa,Xfb

	2-2-comp-forcing

计算预报误差以及预报误差对预报变量的梯度

	2-3-adj-backward

将预报误差对预报变量的梯度作为伴随模式的初值，反向积分得到预报误差对Xa、Xb的梯度。

	3-fcst-err

根据两次伴随结果，计算预报误差对分析变量的敏感性。

	4-fso-impact

把预报误差对分析变量的敏感性作为输入，利用WRFDA伴随求得预报误差对观测的敏感性。

	5-fso-plot

采用数据库方式存储和分类统计观测贡献率，并用于绘图。

FSO系统网页监控

采用基于Python语言的Airflow流程管理软件，对实时运行的FSO作业进行管理。针对每个作业编写DAG（定向非循环图）配置脚本，设置各个任务以及任务间的执行依赖关系。通过在运行机器上访问10.36.4.44:8080/admin链接可以查看当前运行的作业列表。其中DAG列显示的是作业名称，如fso-prod-00Z-v2.0，点击可以进入作业详情页面；Schedule列显示的是作业运行时间，如``00 06 * * *``表示每天06时的00分启动作业运行，Recent Tasks列显示作业运行状态，以不同颜色表示不同运行状态，如深绿色表示已经完成的作业数，浅绿色是正在运行的任务数，灰色是等待执行的任务数，红色表示出错的任务数，通过点击相应颜色的按钮可以进入查看任务；Last Run列可以查看最近运行时间；Links列提供一些快捷的操作按钮。

[image: ../_images/dags.png]
FSO系统作业管理页面

在上一页面中通过点击DAG列中的某一作业名称，可以进入该作业的详细信息查看页面。默认显示Tree View，左侧是展开的子任务，右侧每列小方块是不同时间运行的状态，可以看到最近运行的任务，深绿色表示作业正常结束，浅绿色表示正在运行，红色表示出错，黄色表示遇到问题准备重试，灰色表示在队列中。

[image: ../_images/treeview.png]
作业流程的树状结构图

点击上图中的Graph View视图，可以显示作业中各个任务间的依赖关系图，可以清晰地看出任务流程，其中任务框的颜色同前表明任务的运行状态。通过点击某一任务框，显示进一步的操作选项对话框，如点击View Log按钮可以查看该任务的运行日志。当出现错误时可以查看错误原因，主要的错误是数据未就位。

[image: ../_images/graphview.png]
作业流程依赖关系图

[image: ../_images/taskdetails.png]
任务监控界面

[image: ../_images/tasklog.png]
任务运行日志

FSO结果后处理

gts_omb_oma_01

FSO系统计算得到的预报误差对观测敏感性结果位于/home/zwtd/FSO/china_FSO/run/ccyymmddhh/obsimpact/gts_omb_oma_01文件中。以下图为例对当前gts_omb_oma_01数据结构作简要说明。

>vim gts_omb_oma_01

[image: ../_images/gts_omb_oma.png]

metar

metar 站点个数 # 2个

第一个站点提供的数据个数 # 1 地面自动站仅探测地面层数据，所以每个时刻都每个站点只有一个数据

数据序号 类型标识 纬度 经度 气压 观测变量u的观测值 u新息增量（O-B） 质控码（qc) u观测误差 u的贡献率 观测变量v的观测值 v新息增量（O-B） 质控码（qc) v观测误差 v的贡献率 观测变量t的观测值 t新息增量（O-B） 质控码（qc) t观测误差 t的贡献率 观测变量p的观测值 p新息增量（O-B） 质控码（qc) p观测误差 p的贡献率 观测变量q的观测值 q新息增量（O-B） 质控码（qc) q观测误差 q的贡献率 \# 一个站点的一个高度层数据为一行

1 1SURF_ 22.47 111.36 -888888.0000000 -1.0840874 0.0000000 -88 1.1000000 0.0000000 0.1864257 0.0000000 -88 1.1000000 0.0000000 299.2500000 0.0000000 -88 2.0000000 0.0000000 -888888.0000000 0.0000000 -88 100.0000000 0.0000000 -888888.0000000 0.0000000 -88 -888888.0000000 0.0000000

第二个站点提供的数据个数 # 1

....

注：synop、ships 、buoy 、surface（包括metar) 、sonde_sfc、tamdar_sfc 数据格式相同

sound

sound 站点个数 # 1个

第一个站点提供的数据个数 #5个 探测到5个不同高度层上的数据

站点序号 同一站点数据序号 类型标识 纬度 经度 u的观测值 u的贡献率 质控码(qc) u观测误差 分析增量 v的观测值 v的贡献率 质控码(qc) v观测误差 分析增量 t的观测值 t的贡献率 质控码(qc) t观测误差 分析增量 q的观测值 q的贡献率 质控码(qc) q观测误差 分析增量 # 一个站点的一个高度层数据为一行 探空数据观测变量为u、v、t、q

 1 1 UPA 36.73 101.75 77100.0000000 -1.6704050 0.0000000 -88 1.2200000 0.0000000 -1.0998851 0.0000000 -88 1.2200000 0.0000000 287.3500000 0.0000000 -88 1.0000000 0.0000000 0.0071498 0.0000000 -88 0.0018132 0.0000000

注：sound、tamdar、airep数据格式相同

profiler

profiler 站点个数 # 1个

第一个站点提供的数据个数 #2个 探测到2个不同高度层上的数据

站点序号 同一站点数据序号 类型标识 纬度 经度 u的观测值 u的贡献率 质控码(qc) u观测误差 分析增量 v的观测值 v的贡献率 质控码(qc) v观测误差 分析增量 \#风廓线探测仅有u、v两种观测变量

1 1 WND 20.00 110.15 1415.0000000 -9.0069802 -708.2427394 0 2.2000000 -6.3706098 10.1899120 -1873.6202283 0 2.2000000 9.7260098

Note：pilot、profiler、geoamv、qscat、polaramv数据格式一致

数据库

为了便于FSO运行结果的统计与绘图，采用pythonPostgreSQL数据库的方式对数据进行存储与管理.可参考 /home/zwtd/FSO/fso_2pg.py和/home/zwtd/FSO/china_FSO/fsoplot/data2pg.ncl脚本。

数据库连接

前台查看

>psql -U fso -d fso

>\dt #列举所有数据表

>\d tb_sound #列举tb_sound数据表结构

>select * from tb_sound; #查看tb_sound数据表的具体内容，注意“;”不能少

>drop table tb_sound; #删除数据表，注意“;”不能少

[image: ../_images/tb.png]

从其他电脑登录数据库

psql -U fso -d fso -h 10.36.4.44 -p 5432 -w

后台连接

#!/usr/bin/python
import psycopg2
conn = psycopg2.connect(database="fso",user="fso",password="fSO@2018",host="10.36.4.44",port="5432")

数据表说明

tb_*

* 代表观测类型，如tb_surface。tb_surface中每条数据依次存放:

id time(时间） stnid(类型标识） lon(经度） 纬度（lat)

[image: ../_images/tb_surface.png]

tb_*data

* 代表观测类型,如tb_surfacedata。tb_surfacedata存放gts_omb_oma_01中各点具体数据，tb_*data与tb_*的id一致。每条数据依次存放：

id var(观测变量) lev(高度层) pres(气压) obs(观测值） inv(新息增量) qc(质控码) error(观测误差) inv(贡献率)

[image: ../_images/tb_surfacedata.png]

绘图产品

有了数据库对结果的管理，可直接读取数据库数据进行结果的统计，并传递到NCL绘图脚本中进行绘图。可参考/china_FSO/fsoplot/drawfso.py/等脚本。
绘图产品最终存放于/china_FSO/run/ccyymmddhh/fsoplot/目录中。

Note

负值代表该观测减小预报误差;正值代表该观测增加预报误差

[image: ../_images/map_sound_all.png]
探空观测对12小时预报误差的贡献

[image: ../_images/map_surface_all.png]
地面观测对12小时预报误差的贡献

[image: ../_images/fso_all.png]
观测类型对12小时预报误差的贡献

[image: ../_images/var_all.png]
变量类型对12小时预报误差的贡献

[image: ../_images/lev_all.png]
不同层次观测对12小时预报误差的贡献

[image: ../_images/var_sound.png]
探空观测的不同观测变量对12小时预报误差的贡献

[image: ../_images/var_surface.png]
地面观测的不同观测变量对12小时预报误差的贡献

常见故障处理

当遇到问题时，首先检查任务的log，通过点击出错任务（tree view下的红色块）。以下是可能出现的问题：

观测数据与模式背景场数据的实时获取

地面台站数据取自CIMISS中的SURF_CHN_MAIN_MIN，目前从FTP上获取。如果发现任务出现错误，如下图所示的是地面观测数据未就位，需要检查数据源。

图1：作业出现问题，如上图中的红色块，其余黄色块是由于红色块的失败而无法进行。
如果要重新运行某个任务，可以点击对应的色块，然后选择Clean按钮即可。

图2：通过点击红色块，然后点击弹框中的View Log按钮，查看日志以判断具体错误。

磁盘空间不足问题

Airflow业务流程中已经添加了clean-data任务，会定期清理中间历史数据，如GFS背景场、CIMISS地面台站观测、分析中间文件等，留存的文件是转换后的NetCDF数据。目前一个时次是33MB大小，一天24⨉4=96次，共3.2GB左右，工作站磁盘空间为7.3TB，刨除其它文件占用，可以存放约5年的数据。如果考虑后续三维分析，可以存放越1至2个月的产品数据。

	常见故障处理

常见故障处理

当遇到问题时，首先检查任务的log，通过点击出错任务（tree view下的红色块）。以下是可能出现的问题：

观测数据与模式背景场数据的实时获取

地面台站数据取自CIMISS中的SURF_CHN_MAIN_MIN，目前从FTP上获取。如果发现任务出现错误，如下图所示的是地面观测数据未就位，需要检查数据源。

图1：作业出现问题，如上图中的红色块，其余黄色块是由于红色块的失败而无法进行。
如果要重新运行某个任务，可以点击对应的色块，然后选择Clean按钮即可。

图2：通过点击红色块，然后点击弹框中的View Log按钮，查看日志以判断具体错误。

磁盘空间不足问题

Airflow业务流程中已经添加了clean-data任务，会定期清理中间历史数据，如GFS背景场、CIMISS地面台站观测、分析中间文件等，留存的文件是转换后的NetCDF数据。目前一个时次是33MB大小，一天24⨉4=96次，共3.2GB左右，工作站磁盘空间为7.3TB，刨除其它文件占用，可以存放约5年的数据。如果考虑后续三维分析，可以存放越1至2个月的产品数据。

	常见故障处理

Index

Developer’s Certificate of Origin 1.1

By making a contribution to this project, I certify that:

	The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or

	The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated
in the file; or

	The contribution was provided directly to me by some other
person who certified (1), (2) or (3) and I have not modified
it.

	I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.

The MIT License (MIT)

Copyright (c) 2016-2018 北京朗润知天科技有限公司

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Writing FSO Documentation

FSO uses Sphinx to generate its documentation in a variety of formats,
using reStructuredText to handle the formatting. If you are familiar with
Markdown or Textile, you will quickly grasp reStructuredText. The focus is
on readability and user friendliness.
While they can be quite technical, we always write for humans!

A local table of contents should always be included, like the one below.
It is created automatically by inserting the following:

.. contents::
 :local:

.. raw:: html

<div class="custom-index container"></div>

	Tools Required

	Page and Section Headings and Subheadings

The <div> that is inserted as raw HTML is a event for the documentation’s
JavaScript to dynamically add links to any function and method definitions
contained in the current page.

Tools Required

To see the rendered HTML, ePub, PDF, etc., you will need to install Sphinx
along with the PHP domain extension for Sphinx. The underlying requirement
is to have Python installed. Lastly, you will install the CI Lexer for
Pygments, so that code blocks can be properly highlighted.

easy_install "sphinx==1.2.3"
easy_install sphinxcontrib-phpdomain

Then follow the directions in the README file in the cilexer folder
inside the documentation repository to install the CI Lexer.

Page and Section Headings and Subheadings

Headings not only provide order and sections within a page, but they also
are used to automatically build both the page and document table of contents.
Headings are formed by using certain characters as underlines for a bit of
text. Major headings, like page titles and section headings also use
overlines. Other headings just use underlines, with the following hierarchy:

with overline for page titles
* with overline for major sections
= for subsections
- for subsubsections
^ for subsubsubsections
" for subsubsubsubsections (!)

The TextMate ELDocs Bundle can help you
create these with the following tab triggers:

title->

 ##########
 Page Title
 ##########

sec->

 Major Section

sub->

 Subsection
 ==========

sss->

 SubSubSection

ssss->

 SubSubSubSection
 ^^^^^^^^^^^^^^^^

sssss->

 SubSubSubSubSection (!)
 """""""""""""""""""""""

Contribution Guidelines

Your Pull Requests (PRs) need to meet our guidelines. If a PR fails
to pass these guidelines, it will be declined and you will need to re-submit
when you’ve made the changes. This might sound a bit tough, but it is required
for us to maintain quality of the code-base.

PHP Style

All code must conform to our Style Guide, which is
essentially the Allman indent style [https://en.wikipedia.org/wiki/Indent_style#Allman_style], with
elaboration on naming and readable operators.

This makes certain that all code is the same format as the
existing code and means it will be as readable as possible.

Our Style Guide is similar to PSR-1 and PSR-2, from PHP-FIG,
but not necessarily the same or compatible.

Unit Testing

Unit testing is expected for all FSO components.
We use PHPunit, and run unit tests using travis-ci
for each PR submitted or changed.

In the FSO project, there is a tests folder, with a structure that
parallels that of system.

The normal practice would be to have a unit test class for each of the classes
in system, named appropriately. For instance, the BananaTest
class would test the Banana class. There will be occasions when
it is more convenient to have separate classes to test different functionality
of a single FSO component.

See the PHPUnit website [https://phpunit.de/] for more information.

PHPdoc Comments

Source code should be commented using PHPdoc comments blocks.
Thie means implementation comments to explain potentially confusing sections
of code, and documentation comments before each public or protected
class/interface/trait, method and variable.

See the phpDocumentor website [https://phpdoc.org/] for more information.

We use phpDocumentor2 to generate the API documentation for the
framework, with configuration details in phpdoc.dist.xml in the project
root.

Documentation

The User Guide is an essential component of the FSO framework.

Each framework component or group of components needs a corresponding
section in the User Guide. Some of the more fundamental components will
show up in more than one place.

Change Log

The change-log, in the user guide root, needs to be kept up-to-date.
Not all changes will need an entry in it, but new classes, major or BC changes
to existing classes, and bug fixes should.

See the FSO 3 change log [https://github.com/bcit-ci/FSO/blob/develop/user_guide_src/source/changelog.rst]
for an example.

PHP Compatibility

FSO requires PHP 7.

See the FSO-developer-setup [https://github.com/bcit-ci/FSO-developer-setup]
repository for tips on setting this up on your system.

That repository also contains tips for configuring your IDE or editor to work
better with PHP7 and FSO.

Backwards Compatibility

Generally, we aim to maintain backwards compatibility between minor
versions of the framework. Any changes that break compatibility need
a good reason to do so, and need to be pointed out in the
Upgrading guide.

FSO itself represents a significant backwards compatibility break
with earlier versions of the framework.

Mergeability

Your PRs need to be mergeable before they will be considered.

We suggest that you synchronize your repository’s develop branch with
that in the main repository before submitting a PR.
You will need to resolve any merge conflicts introduced by changes
incorporated since you started working on your contribution.

Contributing to FSO

	Contribution Guidelines

	Contribution Workflow

	Contribution Signing

	FSO Roadmap

	FSO Internals Overview

	Writing FSO Documentation

	PHP Style Guide

	Developer’s Certificate of Origin 1.1

FSO is a community driven project and accepts contributions of code
and documentation from the community. These contributions are made in the form
of Issues or Pull Requests [https://help.github.com/articles/using-pull-requests/]
on the FSO repository [https://github.com/bcit-ci/FSO] on GitHub.

Issues are a quick way to point out a bug. If you find a bug or documentation
error in FSO then please check a few things first:

	There is not already an open Issue

	The issue has already been fixed (check the develop branch, or look for
closed Issues)

	Is it something really obvious that you fix it yourself?

Reporting issues is helpful but an even better approach is to send a Pull
Request, which is done by “Forking” the main repository and committing to your
own copy. This will require you to use the version control system called Git.

Support

Please note that GitHub is not for general support questions! If you are
having trouble using a feature of FSO, ask for help on our
forums [http://forum.codeigniter.com/] instead.

If you are not sure whether you are using something correctly or if you
have found a bug, again - please ask on the forums first.

Security

Did you find a security issue in FSO?

Please don’t disclose it publicly, but e-mail us at security@codeigniter.com,
or report it via our page on HackerOne [https://hackerone.com/codeigniter].

If you’ve found a critical vulnerability, we’d be happy to credit you in our
ChangeLog.

Tips for a Good Issue Report

Use a descriptive subject line (eg parser library chokes on commas) rather than a vague one (eg. your code broke).

Address a single issue in a report.

Identify the FSO version (eg 3.0-develop) and the component if you know it (eg. parser library)

Explain what you expected to happen, and what did happen.
Include error messages and stacktrace, if any.

Include short code segments if they help to explain.
Use a pastebin or dropbox facility to include longer segments of code or screenshots - do not include them in the issue report itself.
This means setting a reasonable expiry for those, until the issue is resolved or closed.

If you know how to fix the issue, you can do so in your own fork & branch, and submit a pull request.
The issue report information above should be part of that.

If your issue report can describe the steps to reproduce the problem, that is great.
If you can include a unit test that reproduces the problem, that is even better, as it gives whoever is fixing
it a clearer target!

FSO Internals Overview

This guide should help contributors understand how the core of the framework works, and what needs to be done
when creating new functionality. Specifically, it details the information needed to create new packages for the
core.

Dependencies

All packages should be designed to be completely isolated from the rest of the packages. This will allow
them to be used in projects outside of FSO. Basically, this means that all dependencies should be
kept to a minimum. Any dependencies must be able to be passed into the constructor. If you do need to use one
of the other core packages, you can create that in the constructor using the Services class, as long as you
provide a way for dependencies to override that:

public function __construct(Foo $foo=null)
{
 $this->foo = $foo instanceOf Foo
 ? $foo
 : \Config\Services::foo();
}

Type hinting

PHP7 provides the ability to type hint [http://php.net/manual/en/functions.arguments.php#functions.arguments.type-declaration]
method parameters and return types. Use it where possible. Return type hinting is not always practical, but do try to
make it work.

At this time, we are not using strict type hinting.

Abstractions

The amount of abstraction required to implement a solution should be the minimal amount required. Every layer of
abstraction brings additional levels of technical debt and unnecessary complexity. That said, don’t be afraid to
use it when it’s needed and can help things.

	Don’t create a new container class when an array will do just fine.

	Start simple, refactor as necessary to achieve clean separation of code, but don’t overdo it.

Testing

Any new packages submitted to the framework must be accompanied by unit tests. The target is 80%+ coverage of all
classes within the package.

	Test only public methods, not protected and private unless the method really needs it due to complexity.

	Don’t just test that the method works, but test for all fail states, thrown exceptions, and other pathways through your code.

Namespaces and Files

All new packages should live under the FSO namespace. The package itself will need its own sub-namespace
that collects all related files into one grouping, like FSO\HTTP.

Files MUST be named the same as the class they hold, and they must match the Style Guide, meaning
CamelCase class and file names. The should be in their own directory that matches the sub-namespace under the system
directory.

The the Router as an example. The Router lives in the FSO\Router namespace. It has two classes,
RouteCollection and Router, which are in the files, system/Router/RouteCollection.php and
system/Router/Router.php respectively.

Interfaces

Most base classes should have an interface defined for them. At the very least this allows them to be easily mocked
and passed in other classes as a dependency without breaking the type-hinting. The interface names should match
the name of the class with “Interface” appended to it, like RouteCollectionInterface.

The Router package mentioned above includes the
FSO\Router\RouterCollectionInterface and FSO\Router\RouterInterface
interfaces to provide the abstractions for the two classes in the package.

Handlers

When a package supports multiple “drivers”, the convention is to place them in a Handlers directory, and
name the child classes as Handlers. You will often find that creating a BaseHandler the child classes can
extend to be beneficial in keeping the code DRY.

See the Log and Session packages for examples.

Configuration

Should the package require user-configurable settings, you should create a new file just for that package under
application/Config. The file name should generally match the package name.

Autoloader

All files within the package should be added to system/Config/AutoloadConfig.php, in the “classmap” property.
This is only used for core framework files, and helps to minimize file system scans and keep performance high.

Command-Line Support

FSO has never been known for it’s strong CLI support. However, if your package could benefit from it, create a
new file under system/Commands. The class contained within is simply a controller that is intended for CLI
usage only. The index() method should provide a list of available commands provided by that package.

Routes must be added to system/Config/Routes.php using the cli() method to ensure it is not accessible
through the browser, but is restricted to the CLI only.

See the MigrationsCommand file for an example.

Documentation

All packages must contain appropriate documentation that matches the tone and style of the rest of the user guide.
In most cases, the top portion of the package’s page should be treated in tutorial fashion, while the second
half would be a class reference.

FSO Roadmap

The roadmap we are working to was announced on our forum [http://forum.codeigniter.com/thread-62615.html] in August, 2015.

Phase 1: Essentials (done)

The first phase focused on nailing the essentials in the framework.
This ensures that all of the basic parts needed to make it work are in place
and working well.

Phase 1 packages include:

	Autoloader

	Logging

	Exception Handling

	HTTP Request/Response

	Routing

	Controllers

	Models

	Database (MySQL & Postgres)

	Config

	Security

	Views

	Sessions

	Basic debugging and profiling

This phase is complete, and the repository is being opened up for the
community to help.

Completed: June 2016

Phase 2: Core Components (in progress)

The second phase focuses on providing and refining the existing classes and
features that FSO users know and love.

Phase 2 packages include:

	The helpers

	Language/Localization features

	Caching

	Email

	Encryption

	Form Validation

	Image Library

	Pagination

	Uploader

During this phase, we will be looking for PRs for the planned and approved
components, and for bug reports filed as github issues.

Those packages that we are ready to implement will appear as issues
in the github repository, with whatever direction we can provide.
As they get implemented and tested, and merged into the framework,
they will show up in the changelog.

Target completion: December 2016

Phase 3: Expansion (not started)

The third phase includes fleshing out and working on the optional packages.
At this point, the framework can be released and need not wait for these libraries to be brought up to date.

Each optional package will have its own repository, and will be developed
and managed independently of the main framework.

Planned optional packages:

	FTP

	XML-RPC

	Zip

	Typography

	Template Parser

These optional packages will constitute the “official” addins for FSO.
Developers will undoubtedly create their own as well. We have not settled
on the best way to promote/integrate these.

Target completion: April 2017

Note

Any target completion dates shown are speculative, and depend
very much on the quantity and quality of community contributions.

Results may not be as depicted. Your mileage may vary. Contents will settle
during shipping.

Contribution Signing

We ask that contributions have code commits signed. This is important in order
to prove, as best we can, the provenance of contributions.

The developer pushing a commit as part of a PR isn’t necessarily the person
who committed it originally, if the commit is not signed. This distorts the
commit history and makes it hard to tell where code came from.

If a person “signs” a commit, they are free to use any name, specifically
one not their own. Again, the commit history cannot be relied on to determine
the origin of the code, if one developer is spoofing another. A malicious person
could commit bad code (for instance a virus) and make it look like another
developer created it.

The best solution, while not fool-proof, is to “securely sign” your
commits. Such commits are digitally signed, with a GPG-key, and
associated with your github account. It still isn’t foolproof, because
a malicious developer could create a bogus email and account, but it is
more reliable than an unsigned or a “signed” commit.

If you don’t sign your commits, we may accept your contribution,
assuming it meets usefulness and contribution guidelines, but only
if it isn’t critical code and only after checking it carefully.
If code performs an important role, we will insist that it be signed, and if
it is critical code (however we interpret that), we will insist that your
contributions be securely signed.

Read below to find out how to sign your commits :)

Basic Signing

You must sign your work, certifying that you either wrote the work or
otherwise have the right to pass it on to an open source project.

Setup your commit message user name and email address. See
Setting your email in Git [https://help.github.com/articles/setting-your-email-in-git/]
to set these up globally or for a single repository.

git config --global user.email "john.public@example.com"
git config --global user.name "John Q Public"

Once in place, you merely have to use –signoff on your commits to your
FSO fork.

git commit --signoff

or simply

git commit -s

This will sign your commits with the information setup in your git config, e.g.

Signed-off-by: John Q Public <john.public@example.com>

Your IDE may have a “Sign-Off” checkbox in the commit window,
or even an option to automatically sign-off all commits you make. You
could even alias git commit to use the -s flag so you don’t have to think about
it.

By signing your work in this manner, you certify to a “Developer’s Certificate
of Origin”. The current version of this certificate is in the Developer’s Certificate of Origin 1.1 file
in the root of this documentation.

Secure Signing

The “basic signing” described above cannot be verified, though it is a great start.
To verify your commits, you will need to
setup a GPG key, and attach it to your github account.

See the git tools [https://git-scm.com/book/en/v2/Git-Tools-Signing-Your-Work]
page for directions on doing this. The complete story is part of
Github help [https://help.github.com/categories/gpg/].

The basic steps are

	generate your GPG key [https://help.github.com/articles/generating-a-new-gpg-key/], and copy the ASCII representation of it.

	Add your GPG key to your Github account [https://help.github.com/articles/adding-a-new-gpg-key-to-your-github-account/].

	Tell Git [https://help.github.com/articles/telling-git-about-your-gpg-key/] about your GPG key.

	Set default signing [https://help.github.com/articles/signing-commits-using-gpg/] to have all of your commits securely signed automatically.

	Provide your GPG key passphrase, as prompted, when you do a commit.

Depending on your IDE, you may have to do your Git commits from your Git bash shell
to use the -S option to force the secure signing.

Commit Messages

Regardless of how you sign a commit, commit messages are important too.
They communicate the intent of a specific change, concisely.
They make it easier to review code, and to find out why a change was made
if the code history is examined later.

The audience for your commit messages will be the codebase maintainers, any
code reviewers, and debuggers trying to figure out when a bug might have been
introduced.

Do try to make your commit messages meaningful.
.

PHP Coding Style Guide

The following document declares a set of coding convention rules to be
followed when contributing PHP code to the FSO project.

Some of these rules, like naming conventions for example, may be
incorporated into the framework’s logic and therefore be functionally
enforced (which would be separately documented), but while we would
recommend it, there’s no requirement that you follow these conventions in
your own applications.

The PHP Interop Group [http://www.php-fig.org/] has proposed a number of
canonical recommendations for PHP code style. FSO is not a member of
of PHP-FIG. We commend their efforts to unite the PHP community,
but no not agree with all of their recommendations.

PSR-2 is PHP-FIG’s Coding Style Guide. We do not claim conformance with it,
although there are a lot of similarities. The differences will be pointed out
below.

Note

See the
FSO-developer-setup [https://github.com/bcit-ci/FSO-developer-setup]
repository for tips on configuring your IDE or editor to help you conform
to the style guide.

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to
be interpreted as described in RFC 2119 [http://www.ietf.org/rfc/rfc2119.txt].

Note: When used below, the term “class” refers to all kinds of classes,
interfaces and traits.

Files

Formatting

	Files MUST use UTF-8 character set encoding without BOM.

	Files MUST use UNIX line endings (LF: n).

	Files MUST end with a single empty line (i.e. LF: n).

Structure

	A single file SHOULD NOT declare more than one class.
Examples where we feel that more than one class in a source file
is appropriate:

	system/Debug/CustomExceptions contains a number of FSO
exceptions and errors, that we want to use for a consistent
experience across applications.
If we stick with the purist route, then each of the 13+/- custom
exceptions would require an additional file, which would have a
performance impact at times.

	system/HTTP/Response provides a RedirectException, used with the
Response class.

	system/Router/Router similarly provides a RedirectException, used with
the Router class.

	Files SHOULD either declare symbols (i.e. classes, functions, constants)
or execute non-declarative logic, but SHOULD NOT do both.

Naming

	File names MUST end with a “.php” name extension and MUST NOT have
multiple name extensions.

	Files declaring classes, interfaces or traits MUST have names exactly matching
the classes that they declare (obviously excluding the “.php” name extension).

	Files declaring functions SHOULD be named in snake_case.php.

Whitespace, indentation and alignment

	Best practice: indentation SHOULD use only tabs.

	Best practice: alignment SHOULD use only spaces.

	If using tabs for anything, you MUST set the tab spacing to 4.

This will accommodate the widest range of developer environment options,
while maintaining consistency of code appearance.

Following the “best practice” above,
the following code block would have a single tab at the beginning of
each line containing braces, and two tabs at the beginning of the
nested statements. No alignment is implied:

{
 $first = 1;
 $second = 2;
 $third = 3;
}

Following the “best practice” above,
the following code block would use spaces to have the assignment
operators line up with each other:

{
 $first = 1;
 $second = 2;
 $third = 3;
}

Note

Our indenting and alignment convention differs from PSR-2, which
only uses spaces for both indenting and alignment.

	Unnecessary whitespace characters MUST NOT be present anywhere within a
script.

That includes trailing whitespace after a line of code, two or
more spaces used when only one is necessary (excluding alignment), as
well as any other whitespace usage that is not functionally required or
explicitly described in this document.

Note

With conforming tab settings, alignment spacing should
be preserved in all development environments.
A pull request that deals only with tabs or spaces for alignment
will not be favorably considered.

Code

PHP tags

	Opening tags MUST only use the <?php and <?= forms.

	Scripts producing output SHOULD use the “short echo” <?= tag.

	Scripts declaring and/or using conditional logic SHOULD use the “long”
<?php tag.

	Closing ?> tags SHOULD NOT be used, unless the intention is to start
direct output.

	Scripts that don’t produce output MUST NOT use the closing ?> tag.

Namespaces and classes

	Class names and namespaces SHOULD be declared in UpperCamelCase,
also called StudlyCaps, unless
another form is functionally required.

	Abbreviations in namespaces, class names and method names SHOULD be
written in capital letters (e.g. PHP).

	Class constants MUST be declared in CAPITALS_SEPARATED_BY_UNDERSCORES.

	Class methods, property names and other variables MUST be declared in
lowerCamelCase().

	Class methods and properties MUST have visibility declarations (i.e.
public, private or protected).

Methods

To maintain consistency between core classes, class properties MUST
be private or protected, and the following public methods
MUST be used for each such property “x”

	getX() when the method returns returns a property value, or null if not set

	setX(value) changes a property value, doesn’t return anything, and can
throw exceptions

	hasX() returns a boolean to if a property exists

	newX() creates an instance of a/the component object and returns it,
and can throw exceptions

	isX() returns true/false for boolean properties

	Methods SHOULD use type hints and return type hints

Procedural code

	Function and variable names SHOULD be declared in snake_case() (all
lowercase letters, separated by underscores), unless another form is
functionally required.

	Constants MUST be declared in CAPITALS_SEPARATED_BY_UNDERSCORES.

Keywords

	All keywords MUST be written in lowercase letters. This includes “scalar”
types, but does NOT include core PHP classes such as stdClass or
Exception.

	Adjacent keywords are separated by a single space character.

	The keywords require, require_once, include, include_once MUST
be followed by a single space character and MUST NOT be followed by a
parenthesis anywhere within the declaration.

	The function keyword MUST be immediately followed by either an opening
parenthesis or a single space and a function name.

	Other keywords not explicitly mentioned in this section MUST be separated
by a single space character from any printable characters around them and
on the same line.

Operators

	The single dot concatenation, incrementing, decrementing, error
suppression operators and references MUST NOT be separated from their
subjects.

	Other operators not explicitly mentioned in this section MUST be
separated by a single space character from any printable characters
around them and on the same line.

	An operator MUST NOT be the last set of printable characters on a line.

	An operator MAY be the first set of printable characters on a line.

Logical Operators

	Use the symbol versions (|| and &&) of the logical operators
instead of the word versions (OR and AND).

	This is consistent with other programming languages

	It avoids the problem of the assignment operator (=) having
higher precedence:

$result = true && false; // $result is false, expected
$result = true OR false; // $result is true, evaluated as "($result = true) OR false"
$result = (true OR false); // $result is false

	The logical negation operator MUST be separated from its argument by a
single space, as in ! $result instead of !$result

	If there is potential confusion with a logical expression, then use
parentheses for clarity, as shown above.

Control Structures

	Control structures, such as if/else statements, for/foreach statements, or
while/do statements, MUST use a brace-surrounded block for their body
segments.

Good control structure examples:

if ($foo)
{
 $bar += $baz;
}
else
{
 $baz = 'bar';
}

Not-acceptable control structures:

if ($foo) $bar = $oneThing + $anotherThing + $yetAnotherThing + $evenMore;

if ($foo) $bar += $baz;
else $baz = 'bar';

Other

	Argument separators (comma: ,) MUST NOT be preceeded by a whitespace
character and MUST be followed by a space character or a newline
(LF: n).

	Semi-colons (i.e. ;) MUST NOT be preceeded by a whitespace character
and MUST be followed by a newline (LF: n).

	Opening parentheses SHOULD NOT be followed by a space character.

	Closing parentheses SHOULD NOT be preceeded by a space character.

	Opening square brackets SHOULD NOT be followed by a space character,
unless when using the “short array” declaration syntax.

	Closing square backets SHOULD NOT be preceeded by a space character,
unless when using the “short array” declaration syntax.

	A curly brace SHOULD be the only printable character on a line, unless:

	When declaring an anonymous function.

	Inside a “variable variable” (i.e. ${$foo} or ${‘foo’.$bar}).

	Around a variable in a double-quoted string (i.e. “Foo {$bar}”).

Note

Our control structures braces convention differs from PSR-2.
We use “Allman style” notation instead.

Contribution Workflow

Much of the workflow for contributing to FSO (or any project) involves
understanding how Git [https://git-scm.com/] is used to
manage a shared repository and contributions to it.
Examples below use the Git bash shell, to be as platform neutral as
possible. Your IDE may make some of these easier.

Some conventions used below, which you will need to provide appropriate
values for when you try these:

ALL_PROJECTS // folder location with all your projects in subfolders, eg /lampp/htdocs
YOUR_PROJECT // folder containing the project you are working on, inside ALL_PROJECTS
ORIGIN_URL // the cloning URL for your repository fork
UPSTREAM_URL // the cloning URL for the FSO repository

Branching

FSO uses the Git-Flow [http://nvie.com/posts/a-successful-git-branching-model/] branching model,
which requires all pull requests to be sent to the “develop” branch. This is
where the next planned version will be developed. The “master” branch will
always contain the latest stable version and is kept clean so a “hotfix” (e.g:
an emergency security patch) can be applied to master to create a new version,
without worrying about other features holding it up. For this reason all
commits need to be made to “develop” and any sent to “master” will be closed
automatically. If you have multiple changes to submit, please place each
change into their own branch on your fork.

One thing at a time: a pull request should only contain one change. That does
not mean only one commit, but one change - however many commits it took. The
reason for this is that if you change X and Y but send a pull request for both
at the same time, we might really want X but disagree with Y, meaning we
cannot merge the request. Using the Git-Flow branching model you can create
new branches for both of these features and send two requests.

Forking

You work with a fork of the FSO repository. This is a copy of our repository,
in your github account. You can make changes to your forked repository, while
you cannot do the same with the shared one - you have to submit pull requests
to it instead.

Creating a fork [https://help.github.com/articles/fork-a-repo/] is done through the Github website. Navigate to our
repository [https://github.com/bcit-ci/FSO],
click the Fork button in the top-right of the page, and choose which account or
organization of yours should contain that fork.

Cloning

You could work on your repository using Github’s web interface, but that is
awkward. Most developers will clone their repository to their local system,
and work with it there.

On Github, navigate to your forked repository, click Clone or download, and
copy the cloning URL shown. We will refer to this as ORIGIN_URL.

Clone your repository, leaving a local folder for you to work with:

cd ALL_PROJECTS
git clone ORIGIN_URL

Synching

Within your local repository, Git will have created an alias, origin, for the
Github repository it is bound to. You want to create an alias for the shared
repository, so that you can “synch” the two, making sure that your repository
includes any other contributions that have been merged by us into the shared repo:

git remote add upstream UPSTREAM_URL

Then synchronizing is done by pulling from us and pushing to you. This is normally
done locally, so that you can resolve any merge conflicts. For instance, to
synchronize develop branches:

git checkout develop
git pull upstream develop
git push origin develop

You might get merge conflicts when you pull from upstream. It is your responsibility
to resolve those locally, so that you can continue collaborating with the shared
repository. Basically, the shared repository is updated in the order that contributions
are merged into it, not in the order that they might have been submitted.
If two PRs update the same piece of code, then the first one to be merged
will take precedence, even if it causes problems for other contributions.

It is a good idea to synchronize repositories when the shared one changes.

Branching Revisited

The top of this page talked about the master and develop branches.
The best practice for your work is to create a feature branch locally,
to hold a group of related changes (source, unit testing, documentation,
change log, etc). This local branch should be named appropriately,
for instance “fix/problem123” or “new/mind-reader”.

For instance, make sure you are in the develop branch, and create a
new feature branch, based on develop, for a new feature you are creating:

git checkout develop
git checkout -b new/mind-reader

Saving changes only updates your local working area.

Committing

Your local changes need to be committed to save them in your local repository.
This is where contribution signing comes in.

You can have as many commits in a branch as you need to “get it right”.
For instance, to commit your work from a debugging session:

git add .
git commit -S -m "Find and fix the broken reference problem"

Just make sure that your commits in a feature branch are all related.

If you are working on two features at a time, then you will want to switch
between them to keep the contributions separate. For instance:

git checkout new/mind-reader
// work away
git add .
git commit -S -m "Added adapter for abc"
git checkout fix/issue-123
// work away
git add .
git commit -S -m "Fixed problem in DEF\Something"
git checkout develop

The last checkout makes sure that you end up in your develop branch as a
starting point for your next session working with your repository.
This is a good practice, as it is not always obvious which branch you are working in.

Pushing Your Branch

At some point, you will decide that your feature branch is complete, or that
it could benefit from a review by fellow developers.

Note

Remember to synch your local repo with the shared one before pushing!
It is a lot easier to resolve conflicts at this stage.

Synchronize your repository:

git checkout develop
git pull upstream develop
git push origin develop

Bring your feature branch up to date:

git checkout new/mind-reader
git merge develop

And finally push your local branch to your github repository:

git push origin new/mind-reader

Pull Requests

On Github, you propose your changes one feature branch at a time, by
switching to the branch you wish to contribute, and then clicking
on “New pull request”.

Make sure the pull request is for the shared develop branch, or it
may be rejected.

Make sure that the PR title is helpful for the maintainers and other developers.
Add any comments appropriate, for instance asking for review.

Note

If you do not provide a title for your PR, the odds of it being summarily rejected
rise astronomically.

When your PR is submitted, a continuous integration task will be triggered,
running all the unit tests as well as any other checking we have configured for it.
If the unit tests fail, or if there are merge conflicts, your PR will not
be mergeable until fixed.

Fix such changes locally, commit them properly, and then push your branch again.
That will update the PR automatically, and re-run the CI tests. You don’t need
to raise a new PR.

If your PR does not follow our contribution guidelines, or is incomplete,
the codebase maintainers will comment on it, pointing out what
needs fixing.

Cleanup

If your PR is accepted and merged into the shared repository, you can delete
that branch in your github repository as well as locally.

Custom Function Calls

$db->callFunction();

This function enables you to call PHP database functions that are not
natively included in FSO, in a platform independent manner. For
example, let’s say you want to call the mysql_get_client_info()
function, which is not natively supported by FSO. You could
do so like this:

$db->callFunction('get_client_info');

You must supply the name of the function, without the mysql_
prefix, in the first parameter. The prefix is added automatically based
on which database driver is currently being used. This permits you to
run the same function on different database platforms. Obviously not all
function calls are identical between platforms, so there are limits to
how useful this function can be in terms of portability.

Any parameters needed by the function you are calling will be added to
the second parameter.

$db->callFunction('some_function', $param1, $param2, etc..);

Often, you will either need to supply a database connection ID or a
database result ID. The connection ID can be accessed using:

$db->connID;

The result ID can be accessed from within your result object, like this:

$query = $db->query("SOME QUERY");

$query->resultID;

数据库配置

FSO 中有一个用来保存数据库配置（用户名，密码，数据库名等）的文件，这个配置文件位于 application/Config/Database.php。你也可以在 .env 文件中配置数据库连接参数。接下来让我们详细看下配置信息。

数据库配置信息存放在数组中:

public $default = [
 'DSN' => '',
 'hostname' => 'localhost',
 'username' => 'root',
 'password' => '',
 'database' => 'database_name',
 'DBDriver' => 'MySQLi',
 'DBPrefix' => '',
 'pConnect' => TRUE,
 'DBDebug' => TRUE,
 'cacheOn' => FALSE,
 'cacheDir' => '',
 'charset' => 'utf8',
 'DBCollat' => 'utf8_general_ci',
 'swapPre' => '',
 'encrypt' => FALSE,
 'compress' => FALSE,
 'strictOn' => FALSE,
 'failover' => array(),
];

类属性的名称就是连接名称，并且可以使用特殊的组名连接。

有些数据库驱动（例如：PDO，PostgreSQL，Oracle，ODBC）可能需要提供完整的 DNS 信息。在这种情况下，你需要使用 DNS 配置参数，就像是使用该驱动的原生 PHP 扩展一样，例如:

// PDO
$default['DSN'] = 'pgsql:host=localhost;port=5432;dbname=database_name';

// Oracle
$default['DSN'] = '//localhost/XE';

当主数据库由于某些原因无法连接时，你可以配置故障转移。例如可以像下面这样为一个连接配置故障转移:

$default['failover'] = [
 [
 'hostname' => 'localhost1',
 'username' => '',
 'password' => '',
 'database' => '',
 'DBDriver' => 'MySQLi',
 'DBPrefix' => '',
 'pConnect' => TRUE,
 'DBDebug' => TRUE,
 'cacheOn' => FALSE,
 'cacheDir' => '',
 'charset' => 'utf8',
 'DBCollat' => 'utf8_general_ci',
 'swapPre' => '',
 'encrypt' => FALSE,
 'compress' => FALSE,
 'strictOn' => FALSE
],
 [
 'hostname' => 'localhost2',
 'username' => '',
 'password' => '',
 'database' => '',
 'DBDriver' => 'MySQLi',
 'DBPrefix' => '',
 'pConnect' => TRUE,
 'DBDebug' => TRUE,
 'cacheOn' => FALSE,
 'cacheDir' => '',
 'charset' => 'utf8',
 'DBCollat' => 'utf8_general_ci',
 'swapPre' => '',
 'encrypt' => FALSE,
 'compress' => FALSE,
 'strictOn' => FALSE
]
];

你可以指定任意多个你喜欢的故障转移配置。

你可以选择存储多组连接值的信息。例如，若你运行多个环境（开发、生产、测试等），你可以为每个环境单独建立连接组，并在组之间进行切换。举个例子：若要设置一个 ‘test’ 环境，你可以这么做:

public $test = [
 'DSN' => '',
 'hostname' => 'localhost',
 'username' => 'root',
 'password' => '',
 'database' => 'database_name',
 'DBDriver' => 'MySQLi',
 'DBPrefix' => '',
 'pConnect' => TRUE,
 'DBDebug' => TRUE,
 'cacheOn' => FALSE,
 'cacheDir' => '',
 'charset' => 'utf8',
 'DBCollat' => 'utf8_general_ci',
 'swapPre' => '',
 'compress' => FALSE,
 'encrypt' => FALSE,
 'strictOn' => FALSE,
 'failover' => array()
);

然后，设置配置文件中的变量并告诉系统要使用该组信息:

$defaultGroup = 'test';

你可以修改配置文件来检测环境并且在类的构造函数中添加所需的逻辑来自动更新正确的 ‘defaultGroup’ 值:

class Database
{
 public $development = [...];
 public $test = [...];
 public $production = [...];

 public function __construct()
 {
 $this->defaultGroup = ENVIRONMENT;
 }
}

配置文件

你可以将配置值保存在当前服务器数据库配置文件 .env 中。你只需要在默认组配置设置中输入你想要改变的值。该值在 default 组中的格式为:

database.default.username = 'root';
database.default.password = '';
database.default.database = 'ci4';

其它信息

参数解释:

连接你的数据库

你可以在任意你需要的方法中添加以下代码来连接你的数据库，或者在你类的构造函数中去设置一个可用的全局参数。

$db = \Config\Database::connect();

如果上面的函数没有指定第一个参数，它将使用数据库配置文件中指定的组来链接数据库。对于大多数人而言，这是首选的方案。

可用的参数

	数据库组名，一个必须与配置类的属性名匹配的字符串。默认值为 $config->defaultGroup；

	TRUE/FALSE (boolean). 是否返回共享连接（参考下文的连接多个数据库）。

手动连接数据库

这个函数的第一个参数是 可选的，被用来从你的配置文件中指定一个特定的数据库组。例如:

从你的配置文件中选择一个特定的组:

$db = \Config\Database::connect('group_name');

其中 group_name 是你配置文件中连接组的名字。

连接多个数据库

默认情况下，connect() 方法每次返回数据库连接的同一实例。若你需要一个单独的连接到同一数据库，发送 false 作为第二个参数:

$db = \Config\Database::connect('group_name', false);

连接到多个数据库

如果你需要同时连接到多个不同的数据库，你可以这样:

$db1 = \Config\Database::connect('group_one');
$db = \Config\Database::connect('group_two');

注意: 将 “group_one” 和 “group_two” 修改为你想要的连接的组名称

重新连接/保持连接有效

当你在处理一些重量级的 PHP 操作时（例如处理图像），若超过了数据库的超时值，你应该考虑在执行后续查询前先调用 reconnect() 方法向数据库发送 ping 命令，这样可以优雅的保持连接有效或重新建立起连接。

$db->reconnect();

手动关闭连接

虽然 FSO 可以智能的管理并自动关闭数据库连接，你仍可以用下面的方式来关闭连接。

$db->close();

Working With Entities

FSO supports Entity classes as a first-class citizen in it’s database layer, while keeping
them completely optional to use. They are commonly used as part of the Repository pattern, but can
be used directly with the Model if that fits your needs better.

Page Contents

	Entity Usage

	Create the Entity Class

	Create the Model

	Working With the Entity Class

	Filling Properties Quickly

	Handling Business Logic

	Data Mapping

	Mutators

	Date Mutators

	Property Casting

	Array Casting

Entity Usage

At its core, an Entity class is simply a class that represents a single database row. It has class properties
to represent the database columns, and provides any additional methods to implement the business logic for
that row. The core feature, though, is that it doesn’t know anything about how to persist itself. That’s the
responsibility of the model or the repository class. That way, if anything changes on how you need to save the
object, you don’t have to change how that object is used throughout the application. This makes it possible to
use JSON or XML files to store the objects during a rapid prototyping stage, and then easily switch to a
database when you’ve proven the concept works.

Lets walk through a very simple User Entity and how we’d work with it to help make things clear.

Assume you have a database table named users that has the following schema:

id - integer
username - string
email - string
password - string
created_at - datetime

Create the Entity Class

Now create a new Entity class. Since there’s no default location to store these classes, and it doesn’t fit
in with the existing directory structure, create a new directory at application/Entities. Create the
Entity itself at application/Entities/User.php.

<?php namespace App\Entities;

use FSO\Entity;

class User extends Entity
{
 protected $id;
 protected $username;
 protected $email;
 protected $password;
 protected $created_at;
 protected $updated_on;
}

At its simplest, this is all you need to do, though we’ll make it more useful in a minute. Note that all of the
database columns are represented in the Entity. This is required for the Model to populate the fields.

Create the Model

Create the model first at application/Models/UserModel.php so that we can interact with it:

<?php namespace App\Models;

use FSO\Model;

class UserModel extends Model
{
 protected $table = 'users';
 protected $allowedFields = [
 'username', 'email', 'password'
];
 protected $returnType = 'App\Entities\User';
 protected $useTimestamps = true;
}

The model uses the users table in the database for all of its activities. We’ve set the $allowedFields property
to include all of the fields that we want outside classes to change. The id, created_at, and updated_on fields
are handled automatically by the class or the database, so we don’t want to change those. Finally, we’ve set our Entity
class as the $returnType. This ensures that all methods on the model that return rows from the database will return
instances of our User Entity class instead of an object or array like normal.

Working With the Entity Class

Now that all of the pieces are in place, you would work with the Entity class as you would any other class:

$user = $userModel->find($id);

// Display
echo $user->username;
echo $user->email;

// Updating
unset($user->username);
if (! isset($user->username)
{
 $user->username = 'something new';
}
$userModel->save($user);

// Create
$user = new App\Entities\User();
$user->username = 'foo';
$user->email = 'foo@example.com';
$userModel->save($user);

You may have noticed that the User class has all of the properties as protected not public, but you can still
access them as if they were public properties. The base class, FSOEntity, takes care of this for you, as
well as providing the ability to check the properties with isset(), or unset() the property.

When the User is passed to the model’s save() method, it automatically takes care of reading the protected properties
and saving any changes to columns listed in the model’s $allowedFields property. It also knows whether to create
a new row, or update an existing one.

Filling Properties Quickly

The Entity class also provides a method, fill() that allows you to shove an array of key/value pairs into the class
and populate the class properties. Only properties that already exist on the class can be populated in this way.

$data = $this->request->getPost();

$user = new App\Entities\User();
$user->fill($data);
$userModel->save($user);

Handling Business Logic

While the examples above are convenient, they don’t help enforce any business logic. The base Entity class implements
some smart __get() and __set() methods that will check for special methods and use those instead of using
the class properties directly, allowing you to enforce any business logic or data conversion that you need.

Here’s an updated User entity to provide some examples of how this could be used:

<?php namespace App\Entities;

use FSO\Entity;

class User extends Entity
{
 protected $id;
 protected $username;
 protected $email;
 protected $password;
 protected $created_at;
 protected $updated_at;

 public function setPassword(string $pass)
 {
 $this->password = password_hash($pass, PASSWORD_BCRYPT);

 return $this;
 }

 public function setCreatedAt(string $dateString)
 {
 $this->created_at = new \DateTime($datetime, new \DateTimeZone('UTC'));

 return
 }

 public function getCreatedAt(string $format = 'Y-m-d H:i:s')
 {
 $timezone = isset($this->timezone)
 ? $this->timezone
 : app_timezone();

 $this->created_at->setTimezone($timezone);

 return $format === true
 ? $this->created_at
 : $this->created_at->format($format);
 }
}

The first thing to notice is the name of the methods we’ve added. For each one, the class expects the snake_case
column name to be converted into PascalCase, and prefixed with either set or get. These methods will then
be automatically called whenever you set or retrieve the class property using the direct syntax (i.e. $user->email).
The methods do not need to be public unless you want them accessed from other classes. For example, the created_at
class property will be access through the setCreatedAt() and getCreatedAt() methods.

In the setPassword() method we ensure that the password is always hashed.

In setCreatedOn() we convert the string we receive from the model into a DateTime object, ensuring that our timezone
is UTC so we can easily convert the the viewer’s current timezone. In getCreatedAt(), it converts the time to
a formatted string in the application’s current timezone.

While fairly simple, these examples show that using Entity classes can provide a very flexible way to enforce
business logic and create objects that are pleasant to use.

// Auto-hash the password - both do the same thing
$user->password = 'my great password';
$user->setPassword('my great password');

Data Mapping

At many points in your career, you will run into situations where the use of an application has changed and the
original column names in the database no longer make sense. Or you find that your coding style prefers camelCase
class properties, but your database schema required snake_case names. These situations can be easily handled
with the Entity class’ data mapping features.

As an example, imagine your have the simplified User Entity that is used throughout your application:

<?php namespace App\Entities;

use FSO\Entity;

class User extends Entity
{
 protected $id;
 protected $name; // Represents a username
 protected $email;
 protected $password;
 protected $created_at;
 protected $updated_at;
}

Your boss comes to you and says that no one uses usernames anymore, so you’re switching to just use emails for login.
But they do want to personalize the application a bit, so they want you to change the name field to represent a user’s
full name now, not their username like it does currently. To keep things tidy and ensure things continue making sense
in the database you whip up a migration to rename the name field to full_name for clarity.

Ignoring how contrived this example is, we now have two choices on how to fix the User class. We could modify the class
property from $name to $full_name, but that would require changes throughout the application. Instead, we can
simply map the full_name column in the database to the $name property, and be done with the Entity changes:

<?php namespace App\Entities;

use FSO\Entity;

class User extends Entity
{
 protected $id;
 protected $name; // Represents a full name now
 protected $email;
 protected $password;
 protected $created_at;
 protected $updated_at;

 protected $_options = [
 'datamap' => [
 'full_name' => 'name'
]
];
}

By adding our new database name to the $datamap array, we can tell the class what class property the database column
should be accessible through. The key of the array is the name of the column in the database, where the value in the array
is class property to map it to.

In this example, when the model sets the full_name field on the User class, it actually assigns that value to the
class’ $name property, so it can be set and retrieved through $user->name. The value will still be accessible
through the original $user->full_name, also, as this is needed for the model to get the data back out and save it
to the database. However, unset and isset only work on the mapped property, $name, not on the original name,
full_name.

Mutators

Date Mutators

By default, the Entity class will convert fields named created_at, updated_at, or deleted_at into
:doc:`Time </libraries/time>`_ instances whenever they are set or retrieved. The Time class provides a large number
of helpful methods in a immutable, localized way.

You can define which properties are automatically converted by adding the name to the options[‘dates’] array:

<?php namespace App\Entities;

use FSO\Entity;

class User extends Entity
{
 protected $id;
 protected $name; // Represents a full name now
 protected $email;
 protected $password;
 protected $created_at;
 protected $updated_at;

 protected $_options = [
 'dates' => ['created_at', 'updated_at', 'deleted_at'],
];
}

Now, when any of those properties are set, they will be converted to a Time instance, using the application’s
current timezone, as set in application/Config/App.php:

$user = new App\Entities\User();

// Converted to Time instance
$user->created_at = 'April 15, 2017 10:30:00';

// Can now use any Time methods:
echo $user->created_at->humanize();
echo $user->created_at->setTimezone('Europe/London')->toDateString();

Property Casting

You can specify that properties in your Entity should be converted to common data types with the casts entry in
the $_options property. The casts option should be an array where the key is the name of the class property,
and the value is the data type it should be cast to. Casting only affects when values are read. No conversions happen
that affect the permanent value in either the entity or the database. Properties can be cast to any of the following
data types: integer, float, double, string, boolean, object, array, datetime, and
timestamp.

For example, if you had a User entity with an is_banned property, you can cast it as a boolean:

<?php namespace App\Entities;

use FSO\Entity;

class User extends Entity
{
 protected $is_banned;

 protected _$options = [
 'casts' => [
 'is_banned' => 'boolean'
]
];
}

Array Casting

Array casting is especially useful with fields that store serialized arrays or json in them. When cast as an array,
they will automatically be unserialized when you read the property’s value. Unlike the rest of the data types that
you can cast properties into, the array cast type will serialize the value whenever the property is set:

<?php namespace App\Entities;

use FSO\Entity;

class User extends Entity
{
 protected $options;

 protected _$options = [
 'casts' => [
 'options' => 'array'
]
];
}

$user = $userModel->find(15);
$options = $user->options;

$options['foo'] = 'bar';

$user->options = $options;
$userModel->save($user);

Database Events

The Database classes contain a few Events that you can tap into in
order to learn more about what is happening during the database execution. These events can
be used to collect data for analysis and reporting. The Debug Toolbar
uses this to collect the queries to display in the Toolbar.

The Events

DBQuery

This event is triggered whenever a new query has been run, whether successful or not. The only parameter is
a Query instance of the current query. You could use this to display all queries
in STDOUT, or logging to a file, or even creating tools to do automatic query analysis to help you spot
potentially missing indexes, slow queries, etc. An example usage might be:

// In Config\Events.php
Events::on('DBQuery', 'FSO\Debug\Toolbar\Collectors\Database::collect');

// Collect the queries so something can be done with them later.
public static function collect(FSO\Database\Query $query)
{
 static::$queries[] = $query;
}

数据库快速入门: 示例代码

这个页面包含的示例代码将简单介绍如何使用数据库类。更详细的信息请参考每个函数单独的介绍页面。

初始化数据库类

下面的代码将根据你的 数据库配置 加载并初始化数据库类

$db = \Config\Database::connect();

数据库类一旦载入，你就可以像下面介绍的那样使用它。

注意：如果你所有的页面都需要连接数据库，你可以让其自动加载。参见 数据库连接。

多结果标准查询（对象形式）

$query = $db->query('SELECT name, title, email FROM my_table');
$results = $query->getResult();

foreach ($results as $row)
{
 echo $row->title;
 echo $row->name;
 echo $row->email;
}

echo 'Total Results: ' . count($results);

上面的 getResult() 函数返回一个 对象数组 。例如：$row->title

多结果标准查询（数组形式）

$query = $db->query('SELECT name, title, email FROM my_table');
$results = $query->getResultArray();

foreach ($results as $row)
{
 echo $row['title'];
 echo $row['name'];
 echo $row['email'];
}

上面的 getResultArray() 函数返回一个 数组的数组 。例如：$row[‘title’]

单结果标准查询（对象形式）

$query = $db->query('SELECT name FROM my_table LIMIT 1');
$row = $query->getRow();
echo $row->name;

上面的 getRow() 函数返回一个 对象 。例如：$row->name

单结果标准查询（数组形式）

$query = $db->query('SELECT name FROM my_table LIMIT 1');
$row = $query->getRowArray();
echo $row['name'];

上面的 getRowArray() 函数返回一个 数组 。例如：$row[‘name’]

标准插入

$sql = "INSERT INTO mytable (title, name) VALUES (".$db->escape($title).", ".$db->escape($name).")";
$db->query($sql);
echo $db->getAffectedRows();

使用查询构造器查询数据

查询构造器模式 提供给我们一种简单的查询数据的途径

$query = $db->table('table_name')->get();

foreach ($query->getResult() as $row)
{
 echo $row->title;
}

上面的 get() 函数从给定的表中查询出所有的结果。查询构造器 提供了所有数据库操作的快捷函数。

使用查询构造器插入数据

$data = array(
 'title' => $title,
 'name' => $name,
 'date' => $date
);

$db->table('mytable')->insert($data); // Produces: INSERT INTO mytable (title, name, date) VALUES ('{$title}', '{$name}', '{$date}')

Database Forge Class

The Database Forge Class contains methods that help you manage your
database.

Table of Contents

	Database Forge Class

	Initializing the Forge Class

	Creating and Dropping Databases

	Creating and Dropping Tables

	Adding fields

	Adding Keys

	Creating a table

	Dropping a table

	Renaming a table

	Modifying Tables

	Adding a Column to a Table

	Dropping a Column From a Table

	Modifying a Column in a Table

	Class Reference

Initializing the Forge Class

Important

In order to initialize the Forge class, your database
driver must already be running, since the forge class relies on it.

Load the Forge Class as follows:

$forge = \Config\Database::forge();

You can also pass another database group name to the DB Forge loader, in case
the database you want to manage isn’t the default one:

$this->myforge = $this->load->dbforge('other_db');

In the above example, we’re passing a the name of a different database group
to connect to as the first parameter.

Creating and Dropping Databases

$forge->createDatabase(‘db_name’)

Permits you to create the database specified in the first parameter.
Returns TRUE/FALSE based on success or failure:

if ($forge->createDatabase('my_db'))
{
 echo 'Database created!';
}

$forge->dropDatabase(‘db_name’)

Permits you to drop the database specified in the first parameter.
Returns TRUE/FALSE based on success or failure:

if ($forge->dropDatabase('my_db'))
{
 echo 'Database deleted!';
}

Creating and Dropping Tables

There are several things you may wish to do when creating tables. Add
fields, add keys to the table, alter columns. FSO provides a
mechanism for this.

Adding fields

Fields are created via an associative array. Within the array you must
include a ‘type’ key that relates to the datatype of the field. For
example, INT, VARCHAR, TEXT, etc. Many datatypes (for example VARCHAR)
also require a ‘constraint’ key.

$fields = array(
 'users' => array(
 'type' => 'VARCHAR',
 'constraint' => '100',
),
);
// will translate to "users VARCHAR(100)" when the field is added.

Additionally, the following key/values can be used:

	unsigned/true : to generate “UNSIGNED” in the field definition.

	default/value : to generate a default value in the field definition.

	null/true : to generate “NULL” in the field definition. Without this,
the field will default to “NOT NULL”.

	auto_increment/true : generates an auto_increment flag on the
field. Note that the field type must be a type that supports this,
such as integer.

	unique/true : to generate a unique key for the field definition.

$fields = array(
 'blog_id' => array(
 'type' => 'INT',
 'constraint' => 5,
 'unsigned' => TRUE,
 'auto_increment' => TRUE
),
 'blog_title' => array(
 'type' => 'VARCHAR',
 'constraint' => '100',
 'unique' => TRUE,
),
 'blog_author' => array(
 'type' =>'VARCHAR',
 'constraint' => '100',
 'default' => 'King of Town',
),
 'blog_description' => array(
 'type' => 'TEXT',
 'null' => TRUE,
),
);

After the fields have been defined, they can be added using
$forge->addField($fields); followed by a call to the
createTable() method.

$forge->addField()

The add fields method will accept the above array.

Passing strings as fields

If you know exactly how you want a field to be created, you can pass the
string into the field definitions with addField()

$forge->addField("label varchar(100) NOT NULL DEFAULT 'default label'");

Note

Passing raw strings as fields cannot be followed by add_key() calls on those fields.

Note

Multiple calls to add_field() are cumulative.

Creating an id field

There is a special exception for creating id fields. A field with type
id will automatically be assigned as an INT(9) auto_incrementing
Primary Key.

$forge->addField('id');
// gives id INT(9) NOT NULL AUTO_INCREMENT

Adding Keys

Generally speaking, you’ll want your table to have Keys. This is
accomplished with $forge->addKey(‘field’). An optional second
parameter set to TRUE will make it a primary key. Note that addKey()
must be followed by a call to createTable().

Multiple column non-primary keys must be sent as an array. Sample output
below is for MySQL.

$forge->addKey('blog_id', TRUE);
// gives PRIMARY KEY `blog_id` (`blog_id`)

$forge->addKey('blog_id', TRUE);
$forge->addKey('site_id', TRUE);
// gives PRIMARY KEY `blog_id_site_id` (`blog_id`, `site_id`)

$forge->addKey('blog_name');
// gives KEY `blog_name` (`blog_name`)

$forge->addKey(array('blog_name', 'blog_label'));
// gives KEY `blog_name_blog_label` (`blog_name`, `blog_label`)

Creating a table

After fields and keys have been declared, you can create a new table
with

$forge->createTable('table_name');
// gives CREATE TABLE table_name

An optional second parameter set to TRUE adds an “IF NOT EXISTS” clause
into the definition

$forge->createTable('table_name', TRUE);
// gives CREATE TABLE IF NOT EXISTS table_name

You could also pass optional table attributes, such as MySQL’s ENGINE:

$attributes = array('ENGINE' => 'InnoDB');
$forge->createTable('table_name', FALSE, $attributes);
// produces: CREATE TABLE `table_name` (...) ENGINE = InnoDB DEFAULT CHARACTER SET utf8 COLLATE utf8_general_ci

Note

Unless you specify the CHARACTER SET and/or COLLATE attributes,
createTable() will always add them with your configured charset
and DBCollat values, as long as they are not empty (MySQL only).

Dropping a table

Execute a DROP TABLE statement and optionally add an IF EXISTS clause.

// Produces: DROP TABLE table_name
$forge->dropTable('table_name');

// Produces: DROP TABLE IF EXISTS table_name
$forge->dropTable('table_name',TRUE);

Renaming a table

Executes a TABLE rename

$forge->renameTable('old_table_name', 'new_table_name');
// gives ALTER TABLE old_table_name RENAME TO new_table_name

Modifying Tables

Adding a Column to a Table

$forge->addColumn()

The addColumn() method is used to modify an existing table. It
accepts the same field array as above, and can be used for an unlimited
number of additional fields.

$fields = array(
 'preferences' => array('type' => 'TEXT')
);
$forge->addColumn('table_name', $fields);
// Executes: ALTER TABLE table_name ADD preferences TEXT

If you are using MySQL or CUBIRD, then you can take advantage of their
AFTER and FIRST clauses to position the new column.

Examples:

// Will place the new column after the `another_field` column:
$fields = array(
 'preferences' => array('type' => 'TEXT', 'after' => 'another_field')
);

// Will place the new column at the start of the table definition:
$fields = array(
 'preferences' => array('type' => 'TEXT', 'first' => TRUE)
);

Dropping a Column From a Table

$forge->dropColumn()

Used to remove a column from a table.

$forge->dropColumn('table_name', 'column_to_drop');

Modifying a Column in a Table

$forge->modifyColumn()

The usage of this method is identical to add_column(), except it
alters an existing column rather than adding a new one. In order to
change the name you can add a “name” key into the field defining array.

$fields = array(
 'old_name' => array(
 'name' => 'new_name',
 'type' => 'TEXT',
),
);
$forge->modifyColumn('table_name', $fields);
// gives ALTER TABLE table_name CHANGE old_name new_name TEXT

Class Reference

Query Helper Methods

Information From Executing a Query

$db->insertID()

The insert ID number when performing database inserts.

Note

If using the PDO driver with PostgreSQL, or using the Interbase
driver, this function requires a $name parameter, which specifies the
appropriate sequence to check for the insert id.

$db->affectedRows()

Displays the number of affected rows, when doing “write” type queries
(insert, update, etc.).

Note

In MySQL “DELETE FROM TABLE” returns 0 affected rows. The database
class has a small hack that allows it to return the correct number of
affected rows. By default this hack is enabled but it can be turned off
in the database driver file.

$db->getLastQuery()

Returns a Query object that represents the last query that was run (the query string, not the result).

Information About Your Database

$db->countAll()

Permits you to determine the number of rows in a particular table.
Submit the table name in the first parameter. This is part of Query Builder.
Example:

echo $db->table('my_table')->countAll();

// Produces an integer, like 25

$db->getPlatform()

Outputs the database platform you are running (MySQL, MS SQL, Postgres,
etc…):

echo $db->getPlatform();

$db->getVersion()

Outputs the database version you are running:

echo $db->getVersion();

数据库参考

FSO 内置了一个快速强大的数据库抽象类，支持传统的 SQL 查询以及 Query Builder 模式。数据库方法的语法简单明了。

	数据库快速入门：示例代码

	数据库配置

	连接数据库

	查询

	生成查询结果

	查询辅助函数

	Query Builder 类

	事务

	获取元数据

	自定义函数调用

	使用 FSO 的模型

	使用 Entity 类

	使用 Database Forge 维护数据库

	数据库迁徙

	数据库填充

	数据库事件

Database Metadata

Table MetaData

These functions let you fetch table information.

List the Tables in Your Database

$db->listTables();

Returns an array containing the names of all the tables in the database
you are currently connected to. Example:

$tables = $db->listTables();

foreach ($tables as $table)
{
 echo $table;
}

Determine If a Table Exists

$db->tableExists();

Sometimes it’s helpful to know whether a particular table exists before
running an operation on it. Returns a boolean TRUE/FALSE. Usage example:

if ($db->tableExists('table_name'))
{
 // some code...
}

Note

Replace table_name with the name of the table you are looking for.

Field MetaData

List the Fields in a Table

$db->getFieldNames()

Returns an array containing the field names. This query can be called
two ways:

1. You can supply the table name and call it from the $db->
object:

$fields = $db->getFieldNames('table_name');

foreach ($fields as $field)
{
 echo $field;
}

2. You can gather the field names associated with any query you run by
calling the function from your query result object:

$query = $db->query('SELECT * FROM some_table');

foreach ($query->getFieldNames() as $field)
{
 echo $field;
}

Determine If a Field is Present in a Table

$db->fieldExists()

Sometimes it’s helpful to know whether a particular field exists before
performing an action. Returns a boolean TRUE/FALSE. Usage example:

if ($db->fieldExists('field_name', 'table_name'))
{
 // some code...
}

Note

Replace field_name with the name of the column you are looking
for, and replace table_name with the name of the table you are
looking for.

Retrieve Field Metadata

$db->getFieldData()

Returns an array of objects containing field information.

Sometimes it’s helpful to gather the field names or other metadata, like
the column type, max length, etc.

Note

Not all databases provide meta-data.

Usage example:

$fields = $db->getFieldData('table_name');

foreach ($fields as $field)
{
 echo $field->name;
 echo $field->type;
 echo $field->max_length;
 echo $field->primary_key;
}

If you have run a query already you can use the result object instead of
supplying the table name:

$query = $db->query("YOUR QUERY");
$fields = $query->fieldData();

The following data is available from this function if supported by your
database:

	name - column name

	max_length - maximum length of the column

	primary_key - 1 if the column is a primary key

	type - the type of the column

List the Indexes in a Table

$db->getIndexData()

please write this, someone…

Database Migrations

Migrations are a convenient way for you to alter your database in a
structured and organized manner. You could edit fragments of SQL by hand
but you would then be responsible for telling other developers that they
need to go and run them. You would also have to keep track of which changes
need to be run against the production machines next time you deploy.

The database table migration tracks which migrations have already been
run so all you have to do is update your application files and
call $migration->current() to work out which migrations should be run.
The current version is found in application/Config/Migrations.php.

	Migration file names

	Create a Migration

	Using $currentVersion

	Database Groups

	Namespaces

	Usage Example

	Commnand-Line Tools

	Migration Preferences

	Class Reference

Migration file names

Each Migration is run in numeric order forward or backwards depending on the
method taken. Two numbering styles are available:

	Sequential: each migration is numbered in sequence, starting with 001.
Each number must be three digits, and there must not be any gaps in the
sequence. (This was the numbering scheme prior to FSO 3.0.)

	Timestamp: each migration is numbered using the timestamp when the migration
was created, in YYYYMMDDHHIISS format (e.g. 20121031100537). This
helps prevent numbering conflicts when working in a team environment, and is
the preferred scheme in FSO 3.0 and later.

The desired style may be selected using the $type setting in your
application/Config/Migrations.php file. The default setting is timestamp.

Regardless of which numbering style you choose to use, prefix your migration
files with the migration number followed by an underscore and a descriptive
name for the migration. For example:

	001_add_blog.php (sequential numbering)

	20121031100537_add_blog.php (timestamp numbering)

Create a Migration

This will be the first migration for a new site which has a blog. All
migrations go in the application/Database/Migrations/ directory and have names such
as 20121031100537_Add_blog.php.

<?php

class Migration_Add_blog extends \FSO\Database\Migration {

 public function up()
 {
 $this->forge->addField([
 'blog_id' => [
 'type' => 'INT',
 'constraint' => 5,
 'unsigned' => TRUE,
 'auto_increment' => TRUE
],
 'blog_title' => [
 'type' => 'VARCHAR',
 'constraint' => '100',
],
 'blog_description' => [
 'type' => 'TEXT',
 'null' => TRUE,
],
]);
 $this->forge->addKey('blog_id', TRUE);
 $this->forge->createTable('blog');
 }

 public function down()
 {
 $this->forge->dropTable('blog');
 }
}

Then in application/Config/Migrations.php set $currentVersion = 20121031100537;.

The database connection and the database Forge class are both available to you through
$this->db and $this->forge, respectively.

Alternatively, you can use a command-line call to generate a skeleton migration file. See
below for more details.

Using $currentVersion

The $currentVersion setting allows you to mark a location that your main application namespace should be set at.
This is especially helpful for use in a production setting. In your application, you can always
update the migration to the current version, and not latest to ensure your production and staging
servers are running the correct schema. On your development servers, you can add additional migrations
for code that is not ready for production, yet. By using the latest() method, you can be assured
that your development machines are always running the bleeding edge schema.

Database Groups

A migration will only be ran against a single database group. If you have multiple groups defined in
application/Config/Database.php, then it will run against the $defaultGroup as specified
in that same configuration file. There may be times when you need different schemas for different
database groups. Perhaps you have one database that is used for all general site information, while
another database is used for mission critical data. You can ensure that migrations are run only
against the proper group by setting the $DBGroup property on your migration. This name must
match the name of the database group exactly:

class Migration_Add_blog extends \FSO\Database\Migration
{
 protected $DBGroup = 'alternate_db_group';

 public function up() { . . . }

 public function down() { . . . }
}

Namespaces

The migration library can automatically scan all namespaces you have defined within
application/Config/Autoload.php and its $psr4 property for matching directory
names. It will include all migrations it finds in Database/Migrations.

Each namespace has it’s own version sequence, this will help you upgrade and downgrade each module (namespace) without affecting other namespaces.

For example, assume that we have the the following namespaces defined in our Autoload
configuration file:

$psr4 = [
 'App' => APPPATH,
 'MyCompany' => ROOTPATH.'MyCompany'
];

This will look for any migrations located at both APPPATH/Database/Migrations and
ROOTPATH/Database/Migrations. This makes it simple to include migrations in your
re-usable, modular code suites.

Usage Example

In this example some simple code is placed in application/Controllers/Migrate.php
to update the schema:

<?php

class Migrate extends \FSO\Controller
{

 public function index()
 {
 $migrate = \Config\Services::migrations();

 try
 {
 $migrate->current();
 }
 catch (\Exception $e)
 {
 // Do something with the error here...
 }
 }

}

Commnand-Line Tools

FSO ships with several commands that are available from the command line to help
you work with migrations. These tools are not required to use migrations but might make things easier for those of you
that wish to use them. The tools primarily provide access to the same methods that are available within the MigrationRunner class.

latest

Migrates all database groups to the latest available migrations:

> php spark migrate:latest

You can use (latest) with the following options:

	(-g) to chose database group, otherwise default database group will be used.

	(-n) to choose namespace, otherwise (App) namespace will be used.

	(all) to migrate all namespaces to the latest migration

This example will migrate Blog namespace to latest:

> php spark migrate:latest -g test -n Blog

current

Migrates the (App) namespace to match the version set in $currentVersion. This will migrate both
up and down as needed to match the specified version:

> php spark migrate:current

You can use (current) with the following options:

	(-g) to chose database group, otherwise default database group will be used.

version

Migrates to the specified version. If no version is provided, you will be prompted
for the version.

// Asks you for the version...
> php spark migrate:version
> Version:

// Sequential
> php spark migrate:version 007

// Timestamp
> php spark migrate:version 20161426211300

You can use (version) with the following options:

	(-g) to chose database group, otherwise default database group will be used.

	(-n) to choose namespace, , otherwise (App) namespace will be used.

rollback

Rolls back all migrations, taking all database groups to a blank slate, effectively migration 0:

> php spark migrate:rollback

You can use (rollback) with the following options:

	(-g) to chose database group, otherwise default database group will be used.

	(-n) to choose namespace, otherwise (App) namespace will be used.

	(all) to migrate all namespaces to the latest migration

refresh

Refreshes the database state by first rolling back all migrations, and then migrating to the latest version:

> php spark migrate:refresh

You can use (refresh) with the following options:

	(-g) to chose database group, otherwise default database group will be used.

	(-n) to choose namespace, otherwise (App) namespace will be used.

	(all) to migrate all namespaces to the latest migration

status

Displays a list of all migrations and the date and time they were ran, or ‘–’ if they have not be ran:

> php spark migrate:status
Filename Migrated On
First_migration.php 2016-04-25 04:44:22

You can use (refresh) with the following options:

	(-g) to chose database group, otherwise default database group will be used.

create

Creates a skeleton migration file in application/Database/Migrations using the timestamp format:

> php spark migrate:create [filename]

You can use (create) with the following options:

	(-n) to choose namespace, otherwise (App) namespace will be used.

Migration Preferences

The following is a table of all the config options for migrations, available in application/Config/Migrations.php.

	Preference

	Default

	Options

	Description

	enabled

	FALSE

	TRUE / FALSE

	Enable or disable migrations.

	path

	‘Database/Migrations/’

	None

	The path to your migrations folder.

	currentVersion

	0

	None

	The current version your database should use.

	table

	migrations

	None

	The table name for storing the schema version number.

	type

	‘timestamp’

	‘timestamp’ / ‘sequential’

	The type of numeric identifier used to name migration files.

Class Reference

Using FSO’s Model

	Manual Model Creation

	FSO’s Model

	Creating Your Model

	Connecting to the Database

	Configuring Your Model

	Working With Data

	Finding Data

	Saving Data

	Deleting Data

	Validating Data

	Protecting Fields

	Working With Query Builder

	Runtime Return Type Changes

	Processing Large Amounts of Data

	Obfuscating IDs in URLs

	Model Events

	Defining Callbacks

	Specifying Callbacks To Run

	Event Parameters

Manual Model Creation

You do not need to extend any special class to create a model for your application. All you need is to get an
instance of the database connection and you’re good to go.

use \FSO\Database\ConnectionInterface;

class UserModel
{
 protected $db;

 public function __construct(ConnectionInterface &$db)
 {
 $this->db =& $db;
 }
}

FSO’s Model

FSO does provide a model class that provides a few nice features, including:

	automatic database connection

	basic CRUD methods

	in-model validation

	automatic pagination

	and more

This class provides a solid base from which to build your own models, allowing you to
rapidly build out your application’s model layer.

Creating Your Model

To take advantage of FSO’s model, you would simply create a new model class
that extends FSO\Model:

class UserModel extends \FSO\Model
{

}

This empty class provides convenient access to the database connection, the Query Builder,
and a number of additional convenience methods.

Connecting to the Database

When the class is first instantiated, if no database connection instance is passed to constructor,
it will automatically connect to the default database group, as set in the configuration. You can
modify which group is used on a per-model basis by adding the DBGroup property to your class.
This ensures that within the model any references to $this->db are made through the appropriate
connection.

class UserModel extends \FSO\Model
{
 protected $DBGroup = 'group_name';
}

You would replace “group_name” with the name of a defined database group from the database
configuration file.

Configuring Your Model

The model class has a few configuration options that can be set to allow the class’ methods
to work seamlessly for you. The first two are used by all of the CRUD methods to determine
what table to use and how we can find the required records:

class UserModel extends \FSO\Model
{
 protected $table = 'users';
 protected $primaryKey = 'id';

 protected $returnType = 'array';
 protected $useSoftDeletes = true;

 protected $allowedFields = ['name', 'email'];

 protected $useTimestamps = false;

 protected $validationRules = [];
 protected $validationMessages = [];
 protected $skipValidation = false;
}

$table

Specifies the database table that this model primarily works with. This only applies to the
built-in CRUD methods. You are not restricted to using only this table in your own
queries.

$primaryKey

This is the name of the column that uniquely identifies the records in this table. This
does not necessarilly have to match the primary key that is specified in the database, but
is used with methods like find() to know what column to match the specified value to.

$returnType

The Model’s CRUD methods will take a step of work away from you and automatically return
the resulting data, instead of the Result object. This setting allows you to define
the type of data that is returned. Valid values are ‘array’, ‘object’, or the fully
qualified name of a class that can be used with the Result object’s getCustomResultObject()
method.

$useSoftDeletes

If true, then any delete* method calls will simply set a flag in the database, instead of
actually deleting the row. This can preserve data when it might be referenced elsewhere, or
can maintain a “recycle bin” of objects that can be restored, or even simply preserve it as
part of a security trail. If true, the find* methods will only return non-deleted rows, unless
the withDeleted() method is called prior to calling the find* method.

This requires an INT or TINYINT field named deleted to be present in the table.

$allowedFields

This array should be updated with the field names that can be set during save, insert, or
update methods. Any field names other than these will be discarded. This helps to protect
against just taking input from a form and throwing it all at the model, resulting in
potential mass assignment vulnerabilities.

$useTimestamps

This boolean value determines whether the current date is automatically added to all inserts
and updates. If true, will set the current time in the format specified by $dateFormat. This
requires that the table have columns named ‘created_at’ and ‘updated_at’ in the appropriate
data type.

$dateFormat

This value works with $useTimestamps to ensure that the correct type of date value gets
inserted into the database. By default, this creates DATETIME values, but valid options
are: datetime, date, or int (a PHP timestamp).

$validationRules

Contains either an array of validation rules as described in How to save your rules
or a string containing the name of a validation group, as described in the same section.
Described in more detail below.

$validationMessages

Contains an array of custom error messages that should be used during validation, as
described in Setting Custom Error Messages. Described in more detail below.

$skipValidation

Whether validation should be skipped during all inserts and updates. The default
value is false, meaning that data will always attempt to be validated. This is
primarily used by the skipValidation() method, but may be changed to true so
this model will never validate.

$beforeInsert
$afterInsert
$beforeUpdate
$afterUpdate
afterFind
afterDelete

These arrays allow you to specify callback methods that will be ran on the data at the
time specified in the property name.

Working With Data

Finding Data

Several functions are provided for doing basic CRUD work on your tables, including find(),
insert(), update(), delete() and more.

find()

Returns a single row where the primary key matches the value passed in as the first parameter:

$user = $userModel->find($user_id);

The value is returned in the format specified in $returnType.

You can specify more than one row to return by passing an array of primaryKey values instead
of just one:

$users = $userModel->find([1,2,3]);

findWhere()

Allows you to specify one or more criteria that must be matched against the data. Returns
all rows that match:

// Use simple where
$users = $userModel->findWhere('role_id >', '10');

// Use array of where values
$users = $userModel->findWhere([
 'status' => 'active',
 'deleted' => 0
]);

findAll()

Returns all results:

$users = $userModel->findAll();

This query may be modified by interjecting Query Builder commands as needed prior to calling this method:

$users = $userModel->where('active', 1)
 ->findAll();

You can pass in a limit and offset values as the first and second
parameters, respectively:

$users = $userModel->findAll($limit, $offset);

first()

Returns the first row in the result set. This is best used in combination with the query builder.

$user = $userModel->where('deleted', 0)
 ->first();

withDeleted()

If $useSoftDeletes is true, then the find* methods will not return any rows where ‘deleted = 1’. To
temporarily override this, you can use the withDeleted() method prior to calling the find* method.

// Only gets non-deleted rows (deleted = 0)
$activeUsers = $userModel->findAll();

// Gets all rows
$allUsers = $userModel->withDeleted()
 ->findAll();

onlyDeleted()

Whereas withDeleted() will return both deleted and not-deleted rows, this method modifies
the next find* methods to return only soft deleted rows:

$deletedUsers = $userModel->onlyDeleted()
 ->findAll();

Saving Data

insert()

An associative array of data is passed into this method as the only parameter to create a new
row of data in the database. The array’s keys must match the name of the columns in $table, while
the array’s values are the values to save for that key:

$data = [
 'username' => 'darth',
 'email' => 'd.vader@theempire.com'
];

$userModel->insert($data);

update()

Updates an existing record in the database. The first parameter is the $primaryKey of the record to update.
An associative array of data is passed into this method as the second parameter. The array’s keys must match the name
of the columns in $table, while the array’s values are the values to save for that key:

$data = [
 'username' => 'darth',
 'email' => 'd.vader@theempire.com'
];

$userModel->update($id, $data);

save()

This is a wrapper around the insert() and update() methods that handles inserting or updating the record
automatically, based on whether it finds an array key matching the $primaryKey value:

// Defined as a model property
$primaryKey = 'id';

// Does an insert()
$data = [
 'username' => 'darth',
 'email' => 'd.vader@theempire.com'
];

$userModel->save($data);

// Performs an update, since the primary key, 'id', is found.
$data = [
 'id' => 3,
 'username' => 'darth',
 'email' => 'd.vader@theempire.com'
];
$userModel->save($data);

The save method also can make working with custom class result objects much simpler by recognizing a non-simple
object and grabbing its public and protected values into an array, which is then passed to the appropriate
insert or update method. This allows you to work with Entity classes in a very clean way. Entity classes are
simple classes that represent a single instance of an object type, like a user, a blog post, job, etc. This
class is responsible for maintaining the business logic surrounding the object itself, like formatting
elements in a certain way, etc. They shouldn’t have any idea about how they are saved to the database. At their
simplest, they might look like this:

namespace App\Entities;

class Job
{
 protected $id;
 protected $name;
 protected $description;

 public function __get($key)
 {
 if (property_exists($this, $key))
 {
 return $this->$key;
 }
 }

 public function __set($key, $value)
 {
 if (property_exists($this, $key))
 {
 $this->$key = $value;
 }
 }
}

A very simple model to work with this might look like:

class JobModel extends \FSO\Model
{
 protected $table = 'jobs';
 protected $returnType = '\App\Entities\Job';
 protected $allowedFields = [
 'name', 'description'
];
}

This model works with data from the jobs table, and returns all results as an instance of App\Entities\Job.
When you need to persist that record to the database, you will need to either write custom methods, or use the
model’s save() method to inspect the class, grab any public and private properties, and save them to the database:

// Retrieve a Job instance
$job = $model->find(15);

// Make some changes
$job->name = "Foobar";

// Save the changes
$model->save($job);

Note

If you find yourself working with Entities a lot, FSO provides a built-in Entity class
that provides several handy features that make developing Entities simpler.

Deleting Data

delete()

Takes a primary key value as the first parameter and deletes the matching record from the model’s table:

$userModel->delete(12);

If the model’s $useSoftDeletes value is true, this will update the row to set ‘deleted = 1’. You can force
a permanent delete by setting the second parameter as true.

deleteWhere()

Deletes multiple records from the model’s table based on the criteria pass into the first two parameters.

// Simple where
$userMdoel->deleteWhere('status', 'inactive');

// Complex where
$userModel->deleteWhere([
 'status' => 'inactive',
 'warn_lvl >=' => 50
]);

If the model’s $useSoftDeletes value is true, this will update the rows to set ‘deleted = 1’. You can force
a permanent delete by setting the third parameter as true.

purgeDeleted()

Cleans out the database table by permanently removing all rows that have ‘deleted = 1’.

$userModel->purgeDeleted();

Validating Data

For many people, validating data in the model is the preferred way to ensure the data is kept to a single
standard, without duplicating code. The Model class provides a way to automatically have all data validated
prior to saving to the database with the insert(), update(), or save() methods.

The first step is to fill out the $validationRules class property with the fields and rules that should
be applied. If you have custom error message that you want to use, place them in the $validationMessages array:

class UserModel extends Model
{
 protected $validationRules = [
 'username' => 'required|alpha_numeric_space|min_length[3]',
 'email' => 'required|valid_email|is_unique[users.email]',
 'password' => 'required|min_length[8]',
 'pass_confirm' => 'required_with[password]|matches[password]'
];

 protected $validationMessages = [
 'email' => [
 'is_unique' => 'Sorry. That email has already been taken. Please choose another.'
]
];
}

Now, whenever you call the insert(), update(), or save() methods, the data will be validated. If it fails,
the model will return boolean false. You can use the errors() method to retrieve the validation errors:

if ($model->save($data) === false)
{
 return view('updateUser', ['errors' => $model->errors()];
}

This returns an array with the field names and their associated errors that can be used to either show all of the
errors at the top of the form, or to display them individually:

<?php if (! empty($errors)) : ?>
 <div class="alert alert-danger">
 <?php foreach ($errors as $field => $error) : ?>
 <p><?= $error ?></p>
 <?php endforeach ?>
 </div>
<?php endif ?>

If you’d rather organize your rules and error messages within the Validation configuration file, you can do that
and simply set $validationRules to the name of the validation rule group you created:

class UserModel extends Model
{
 protected $validationRules = 'users';
}

Protecting Fields

To help protect against Mass Assignment Attacks, the Model class requires that you list all of the field names
that can be changed during inserts and updates in the $allowedFields class property. Any data provided
in addition to these will be removed prior to hitting the database. This is great for ensuring that timestamps,
or primary keys do not get changed.

protected $allowedFields = ['name', 'email', 'address'];

Occasionally, you will find times where you need to be able to change these elements. This is often during
testing, migrations, or seeds. In these cases, you can turn the protection on or off:

$model->protect(false)
 ->insert($data)
 ->protect(true);

Working With Query Builder

You can get access to a shared instance of the Query Builder for that model’s database connection any time you
need it:

$builder = $userModel->builder();

This builder is already setup with the model’s $table.

You can also use Query Builder methods and the Model’s CRUD methods in the same chained call, allowing for
very elegant use:

$users = $userModel->where('status', 'active')
 ->orderBy('last_login', 'asc')
 ->findAll();

Note

You can also access the model’s database connection seamlessly:

$user_name = $userModel->escape($name);

Runtime Return Type Changes

You can specify the format that data should be returned as when using the find*() methods as the class property,
$returnType. There may be times that you would like the data back in a different format, though. The Model
provides methods that allow you to do just that.

Note

These methods only change the return type for the next find*() method call. After that,
it is reset to its default value.

asArray()

Returns data from the next find*() method as associative arrays:

$users = $userModel->asArray()->findWhere('status', 'active');

asObject()

Returns data from the next find*() method as standard objects or custom class intances:

// Return as standard objects
$users = $userModel->asObject()->findWhere('status', 'active');

// Return as custom class instances
$users = $userModel->asObject('User')->findWhere('status', 'active');

Processing Large Amounts of Data

Sometimes, you need to process large amounts of data and would run the risk of running out of memory.
To make this simpler, you may use the chunk() method to get smaller chunks of data that you can then
do your work on. The first parameter is the number of rows to retrieve in a single chunk. The second
parameter is a Closure that will be called for each row of data.

This is best used during cronjobs, data exports, or other large tasks.

$userModel->chunk(100, function ($data)
{
 // do something.
 // $data is a single row of data.
});

Obfuscating IDs in URLs

Instead of displaying the resource’s ID in the URL (i.e. /users/123), the model provides a simple
way to obfuscate the ID. This provides some protection against attackers simply incrementing IDs in the
URL to do bad things to your data.

This is not a valid security use, but another simple layer of protection. Determined attackers could very easily
determine the actual ID.

The data is not stored in the database at any time, it is simply used to disguise the ID. When creating a URL
you can use the encodeID() method to get the hashed ID.

// Creates something like: http://exmample.com/users/MTIz
$url = '/users/'. $model->encodeID($user->id);

When you need to grab the item in your controller, you can use the findByHashedID() method instead of the
find() method.

public function show($hashedID)
{
 $user = $this->model->findByHashedID($hashedID);
}

If you ever need to decode the hash, you may do so with the decodeID() method.

$hash = $model->encodeID(123);
$check = $model->decodeID($hash);

Note

While the name is “hashed id”, this is not actually a hashed variable, but that term has become
common in many circles to represent the encoding of an ID into a short, unique, identifier.

Model Events

There are several points within the model’s execution that you can specify multiple callback methods to run.
These methods can be used to normalize data, hash passwords, save related entities, and much more. The following
points in the model’s execution can be affected, each through a class property: $beforeInsert, $afterInsert,
$beforeUpdate, afterUpdate, afterFind, and afterDelete.

Defining Callbacks

You specify the callbacks by first creating a new class method in your model to use. This class will always
receive a $data array as its only parameter. The exact contents of the $data array will vary between events, but
will always contain a key named data that contains the primary data passed to original method. In the case
of the insert* or update* methods, that will be the key/value pairs that are being inserted into the database. The
main array will also contain the other values passed to the method, and be detailed later. The callback method
must return the original $data array so other callbacks have the full information.

protected function hashPassword(array $data)
{
 if (! isset($data['data']['password']) return $data;

 $data['data']['password_hash'] = password_hash($data['data']['password'], PASSWORD_DEFAULT);
 unse($data['data']['password'];

 return $data;
}

Specifying Callbacks To Run

You specify when to run the callbacks by adding the method name to the appropriate class property (beforeInsert, afterUpdate,
etc). Multiple callbacks can be added to a single event and they will be processed one after the other. You can
use the same callback in multiple events:

protected $beforeInsert = ['hashPassword'];
protected $beforeUpdate = ['hashPassword'];

Event Parameters

Since the exact data passed to each callback varies a bit, here are the details on what is in the $data parameter
passed to each event:

	Event

	$data contents

	beforeInsert

	
	data = the key/value pairs that are being inserted. If an object or Entity class is passed to the insert

	method, it is first converted to an array.

	afterInsert

	
	data = the original key/value pairs being inserted. result = the results of the insert() method

	used through the Query Builder.

	beforeUpdate

	
	id = the primary key of the row being updated. data = the key/value pairs that are being

	inserted. If an object or Entity class is passed to the insert method, it is first converted to an array.

	afterUpdate

	
	id = the primary key of the row being updated. data = the original key/value pairs being updated.

	result = the results of the update() method used through the Query Builder.

	afterFind

	Varies by find* method. See the following:

	
	find()

	
	id = the primary key of the row being searched for. data = The resulting row of data, or null if

	no result found.

	
	findWhere()

	data = the resulting rows of data, or null if no result found.

	
	findAll()

	
	data = the resulting rows of data, or null if no result found. limit = the number of rows to find.

	offset = the number of rows to skip during the search.

	
	first()

	data = the resulting row found during the search, or null if none found.

	afterDelete

	Varies by delete* method. See the following:

	
	delete()

	
	id = primary key of row being deleted. purge boolean whether soft-delete rows should be

	hard deleted. result = the result of the delete() call on the Query Builder. data = unused.

	
	deleteWhere()

	
	key/value = the key/value pair used to search for rows to delete. purge boolean whether

	soft-delete rows should be hard deleted. result = the result of the delete() call on the Query
Builder. data = unused.

Queries

Table of Contents

	Queries

	Query Basics

	Regular Queries

	Simplified Queries

	Working with Database prefixes manually

	Protecting identifiers

	Escaping Queries

	Query Bindings

	Named Bindings

	Handling Errors

	Prepared Queries

	Preparing the Query

	Executing the Query

	Other Methods

	Working with Query Objects

	The Query Class

Query Basics

Regular Queries

To submit a query, use the query function:

$db->query('YOUR QUERY HERE');

The query() function returns a database result object when “read”
type queries are run, which you can use to show your
results. When “write” type queries are run it simply
returns TRUE or FALSE depending on success or failure. When retrieving
data you will typically assign the query to your own variable, like
this:

$query = $db->query('YOUR QUERY HERE');

Simplified Queries

The simpleQuery method is a simplified version of the
$db->query() method. It DOES
NOT return a database result set, nor does it set the query timer, or
compile bind data, or store your query for debugging. It simply lets you
submit a query. Most users will rarely use this function.

It returns whatever the database drivers’ “execute” function returns.
That typically is TRUE/FALSE on success or failure for write type queries
such as INSERT, DELETE or UPDATE statements (which is what it really
should be used for) and a resource/object on success for queries with
fetchable results.

if ($db->simpleQuery('YOUR QUERY'))
{
 echo "Success!";
}
else
{
 echo "Query failed!";
}

Note

PostgreSQL’s pg_exec() function (for example) always
returns a resource on success, even for write type queries.
So take that in mind if you’re looking for a boolean value.

Working with Database prefixes manually

If you have configured a database prefix and would like to prepend it to
a table name for use in a native SQL query for example, then you can use
the following:

$db->prefixTable('tablename'); // outputs prefix_tablename

If for any reason you would like to change the prefix programatically
without needing to create a new connection, you can use this method:

$db->setPrefix('newprefix');
$db->prefixTable('tablename'); // outputs newprefix_tablename

Protecting identifiers

In many databases it is advisable to protect table and field names - for
example with backticks in MySQL. Query Builder queries are
automatically protected, however if you need to manually protect an
identifier you can use:

$db->protectIdentifiers('table_name');

Important

Although the Query Builder will try its best to properly
quote any field and table names that you feed it, note that it
is NOT designed to work with arbitrary user input. DO NOT feed it
with unsanitized user data.

This function will also add a table prefix to your table, assuming you
have a prefix specified in your database config file. To enable the
prefixing set TRUE (boolean) via the second parameter:

$db->protectIdentifiers('table_name', TRUE);

Escaping Queries

It’s a very good security practice to escape your data before submitting
it into your database. FSO has three methods that help you do
this:

	$db->escape() This function determines the data type so
that it can escape only string data. It also automatically adds
single quotes around the data so you don’t have to:

$sql = "INSERT INTO table (title) VALUES(".$db->escape($title).")";

	$db->escapeString() This function escapes the data passed to
it, regardless of type. Most of the time you’ll use the above
function rather than this one. Use the function like this:

$sql = "INSERT INTO table (title) VALUES('".$db->escapeString($title)."')";

	$db->escapeLikeString() This method should be used when
strings are to be used in LIKE conditions so that LIKE wildcards
(‘%’, ‘_’) in the string are also properly escaped.

$search = '20% raise';
$sql = "SELECT id FROM table WHERE column LIKE '%" .
 $db->escapeLikeString($search)."%' ESCAPE '!'";

Important

The escapeLikeString() method uses ‘!’ (exclamation mark)
to escape special characters for LIKE conditions. Because this
method escapes partial strings that you would wrap in quotes
yourself, it cannot automatically add the ESCAPE '!'
condition for you, and so you’ll have to manually do that.

Query Bindings

Bindings enable you to simplify your query syntax by letting the system
put the queries together for you. Consider the following example:

$sql = "SELECT * FROM some_table WHERE id = ? AND status = ? AND author = ?";
$db->query($sql, [3, 'live', 'Rick']);

The question marks in the query are automatically replaced with the
values in the array in the second parameter of the query function.

Binding also work with arrays, which will be transformed to IN sets:

$sql = "SELECT * FROM some_table WHERE id IN ? AND status = ? AND author = ?";
$db->query($sql, array(array(3, 6), 'live', 'Rick'));

The resulting query will be:

SELECT * FROM some_table WHERE id IN (3,6) AND status = 'live' AND author = 'Rick'

The secondary benefit of using binds is that the values are
automatically escaped, producing safer queries. You don’t have to
remember to manually escape data; the engine does it automatically for
you.

Named Bindings

Instead of using the question mark to mark the location of the bound values,
you can name the bindings, allowing the keys of the values passed in to match
placeholders in the query:

$sql = "SELECT * FROM some_table WHERE id = :id AND status = :status AND author = :name";
$db->query($sql, ['id' => 3,
 'status' => 'live',
 'name' => 'Rick']);

Handling Errors

$db->error();

If you need to get the last error that has occured, the error() method
will return an array containing its code and message. Here’s a quick
example:

if (! $db->simpleQuery('SELECT `example_field` FROM `example_table`'))
{
 $error = $db->error(); // Has keys 'code' and 'message'
}

Prepared Queries

Most database engines support some form of prepared statements, that allow you to prepare a query once, and then run
that query multiple times with new sets of data. This eliminates the possibility of SQL injection since the data is
passed to the database in a different format than the query itself. When you need to run the same query multiple times
it can be quite a bit faster, too. However, to use it for every query can have major performance hits, since you’re calling
out to the database twice as often. Since the Query Builder and Database connections already handle escaping the data
for you, the safety aspect is already taken care of for you. There will be times, though, when you need to ability
to optimize the query by running a prepared statement, or prepared query.

Preparing the Query

This can be easily done with the prepare() method. This takes a single parameter, which is a Closure that returns
a query object. Query objects are automatically generated by any of the “final” type queries, including insert,
update, delete, replace, and get. This is handled the easiest by using the Query Builder to
run a query. The query is not actually ran, and the values don’t matter since they’re never applied, instead acting
as placeholders. This returns a PreparedQuery object:

$pQuery = $db->prepare(function($db)
{
 return $db->table('user')
 ->insert([
 'name' => 'x',
 'email' => 'y',
 'country' => 'US'
]);
});

If you don’t want to use the Query Builder, you can create the Query object manually, using question marks for
value placeholders:

$pQuery = $db->prepare(function($db)
{
 $sql = "INSERT INTO user (name, email, country) VALUES (?, ?, ?)";

 return new Query($db)->setQuery($sql);
});

If the database requires an array of options passed to it during the prepare statement phase, you can pass that
array through in the second parameter:

$pQuery = $db->prepare(function($db)
{
 $sql = "INSERT INTO user (name, email, country) VALUES (?, ?, ?)";

 return new Query($db)->setQuery($sql);
}, $options);

Executing the Query

Once you have a prepared query, you can use the execute() method to actually run the query. You can pass in as
many variables as you need in the query parameters. The number of parameters you pass must match the number of
placeholders in the query. They must also be passed in the same order as the placeholders appear in the original
query:

// Prepare the Query
$pQuery = $db->prepare(function($db)
{
 return $db->table('user')
 ->insert([
 'name' => 'x',
 'email' => 'y',
 'country' => 'US'
]);
});

// Collect the Data
$name = 'John Doe';
$email = 'j.doe@example.com';
$country = 'US';

// Run the Query
$results = $pQuery->execute($name, $email, $country);

This returns a standard result set.

Other Methods

In addition, to these two primary methods, the prepared query object also has the following methods:

close()

While PHP does a pretty good job of closing all open statements with the database, it’s always a good idea to
close out the prepared statement when you’re done with it:

$pQuery->close();

getQueryString()

This returns the prepared query as a string.

hasError()

Returns boolean true/false if the last execute() call created any errors.

getErrorCode()
getErrorMessage()

If any errors were encountered, these methods can be used to retrieve the error code and string.

Working with Query Objects

Internally, all queries are processed and stored as instances of
FSODatabaseQuery. This class is responsible for binding
the parameters, otherwise preparing the query, and storing performance
data about its query.

getLastQuery()

When you just need to retrieve the last Query object, use the
getLastQuery() method:

$query = $db->getLastQuery();
echo (string)$query;

The Query Class

Each query object stores several pieces of information about the query itself.
This is used, in part, by the Timeline feature, but is available for your use
as well.

getQuery()

Returns the final query, after all processing has happened. This is the exact
query that was sent to the database:

$sql = $query->getQuery();

This same value can be retrieved by casting the Query object to a string:

$sql = (string)$query;

getOriginalQuery()

Returns the raw SQL that was passed into the object. This will not have any
binds in it, or prefixes swapped out, etc:

$sql = $query->getOriginalQuery();

hasError()

If an error was encountered during the execution of this query, this method
will return true:

if ($query->hasError())
{
 echo 'Code: '. $query->getErrorCode();
 echo 'Error: '. $query->getErrorMessage();
}

isWriteType()

Returns true if the query was determined to be a write-type query (i.e.
INSERT, UPDATE, DELETE, etc):

if ($query->isWriteType())
{
 ... do something
}

swapPrefix()

Replaces one table prefix with another value in the final SQL. The first
parameter is the original prefix that you want replaced, and the second
parameter is the value you want it replaced with:

$sql = $query->swapPrefix('ci3_', 'ci4_');

getStartTime()

Gets the time the query was executed in seconds with microseconds:

$microtime = $query->getStartTime();

getDuration()

Returns a float with the duration of the query in seconds with microseconds:

$microtime = $query->getDuration();

Query Builder Class

FSO gives you access to a Query Builder class. This pattern
allows information to be retrieved, inserted, and updated in your
database with minimal scripting. In some cases only one or two lines
of code are necessary to perform a database action.
FSO does not require that each database table be its own class
file. It instead provides a more simplified interface.

Beyond simplicity, a major benefit to using the Query Builder features
is that it allows you to create database independent applications, since
the query syntax is generated by each database adapter. It also allows
for safer queries, since the values are escaped automatically by the
system.

	Loading the Query Builder

	Selecting Data

	Looking for Specific Data

	Looking for Similar Data

	Ordering results

	Limiting or Counting Results

	Query grouping

	Inserting Data

	Updating Data

	Deleting Data

	Method Chaining

	Resetting Query Builder

	Class Reference

Loading the Query Builder

The Query Builder is loaded through the table() method on the
database connection. This sets the FROM portion of the query for you
and returns a new instance of the Query Builder class:

$db = \Config\Database::connect();
$builder = $db->table('users');

The Query Builder is only loaded into memory when you specifically request
the class, so no resources are used by default.

Selecting Data

The following functions allow you to build SQL SELECT statements.

$builder->get()

Runs the selection query and returns the result. Can be used by itself
to retrieve all records from a table:

$builder = $db->table('mytable');
 $query = $builder->get(); // Produces: SELECT * FROM mytable

The first and second parameters enable you to set a limit and offset
clause:

$query = $builder->get(10, 20);

// Executes: SELECT * FROM mytable LIMIT 20, 10
// (in MySQL. Other databases have slightly different syntax)

You’ll notice that the above function is assigned to a variable named
$query, which can be used to show the results:

$query = $builder->get();

foreach ($query->getResult() as $row)
{
 echo $row->title;
}

Please visit the result functions page for a full
discussion regarding result generation.

$builder->getCompiledSelect()

Compiles the selection query just like $builder->get() but does not run
the query. This method simply returns the SQL query as a string.

Example:

$sql = $builder->getCompiledSelect();
echo $sql;

// Prints string: SELECT * FROM mytable

The first parameter enables you to set whether or not the query builder query
will be reset (by default it will be reset, just like when using $builder->get()):

echo $builder->limit(10,20)->getCompiledSelect(false);

// Prints string: SELECT * FROM mytable LIMIT 20, 10
// (in MySQL. Other databases have slightly different syntax)

echo $builder->select('title, content, date')->getCompiledSelect();

// Prints string: SELECT title, content, date FROM mytable LIMIT 20, 10

The key thing to notice in the above example is that the second query did not
utilize $builder->from() and did not pass a table name into the first
parameter. The reason for this outcome is because the query has not been
executed using $builder->get() which resets values or reset directly
using $builder->resetQuery().

$builder->getWhere()

Identical to the get() function except that it permits you to add a
“where” clause in the first parameter, instead of using the db->where()
function:

$query = $builder->getWhere(['id' => $id], $limit, $offset);

Please read the about the where function below for more information.

$builder->select()

Permits you to write the SELECT portion of your query:

$builder->select('title, content, date');
$query = $builder->get();

// Executes: SELECT title, content, date FROM mytable

Note

If you are selecting all (*) from a table you do not need to
use this function. When omitted, FSO assumes that you wish
to select all fields and automatically adds ‘SELECT *’.

$builder->select() accepts an optional second parameter. If you set it
to FALSE, FSO will not try to protect your field or table names.
This is useful if you need a compound select statement where automatic
escaping of fields may break them.

$builder->select('(SELECT SUM(payments.amount) FROM payments WHERE payments.invoice_id=4) AS amount_paid', FALSE);
$query = $builder->get();

$builder->selectMax()

Writes a SELECT MAX(field) portion for your query. You can optionally
include a second parameter to rename the resulting field.

$builder->selectMax('age');
$query = $builder->get(); // Produces: SELECT MAX(age) as age FROM mytable

$builder->selectMax('age', 'member_age');
$query = $builder->get(); // Produces: SELECT MAX(age) as member_age FROM mytable

$builder->selectMin()

Writes a “SELECT MIN(field)” portion for your query. As with
selectMax(), You can optionally include a second parameter to rename
the resulting field.

$builder->selectMin('age');
$query = $builder->get(); // Produces: SELECT MIN(age) as age FROM mytable

$builder->selectAvg()

Writes a “SELECT AVG(field)” portion for your query. As with
selectMax(), You can optionally include a second parameter to rename
the resulting field.

$builder->selectAvg('age');
$query = $builder->get(); // Produces: SELECT AVG(age) as age FROM mytable

$builder->selectSum()

Writes a “SELECT SUM(field)” portion for your query. As with
selectMax(), You can optionally include a second parameter to rename
the resulting field.

$builder->selectSum('age');
$query = $builder->get(); // Produces: SELECT SUM(age) as age FROM mytable

$builder->from()

Permits you to write the FROM portion of your query:

$builder->select('title, content, date');
$builder->from('mytable');
$query = $builder->get(); // Produces: SELECT title, content, date FROM mytable

Note

As shown earlier, the FROM portion of your query can is specified
in the $db->table() function. Additional calls to from() will add more tables
to the FROM portion of your query.

$builder->join()

Permits you to write the JOIN portion of your query:

$builder->db->table('blog');
 $builder->select('*');
 $builder->join('comments', 'comments.id = blogs.id');
 $query = $builder->get();

 // Produces:
 // SELECT * FROM blogs JOIN comments ON comments.id = blogs.id

Multiple function calls can be made if you need several joins in one
query.

If you need a specific type of JOIN you can specify it via the third
parameter of the function. Options are: left, right, outer, inner, left
outer, and right outer.

$builder->join('comments', 'comments.id = blogs.id', 'left');
// Produces: LEFT JOIN comments ON comments.id = blogs.id

Looking for Specific Data

$builder->where()

This function enables you to set WHERE clauses using one of four
methods:

Note

All values passed to this function are escaped automatically,
producing safer queries.

	Simple key/value method:

$builder->where('name', $name); // Produces: WHERE name = 'Joe'

Notice that the equal sign is added for you.

If you use multiple function calls they will be chained together with
AND between them:

$builder->where('name', $name);
$builder->where('title', $title);
$builder->where('status', $status);
// WHERE name = 'Joe' AND title = 'boss' AND status = 'active'

	Custom key/value method:

You can include an operator in the first parameter in order to
control the comparison:

$builder->where('name !=', $name);
$builder->where('id <', $id); // Produces: WHERE name != 'Joe' AND id < 45

	Associative array method:

$array = ['name' => $name, 'title' => $title, 'status' => $status];
$builder->where($array);
// Produces: WHERE name = 'Joe' AND title = 'boss' AND status = 'active'

You can include your own operators using this method as well:

$array = ['name !=' => $name, 'id <' => $id, 'date >' => $date];
$builder->where($array);

	
	Custom string:

	You can write your own clauses manually:

$where = "name='Joe' AND status='boss' OR status='active'";
$builder->where($where);

$builder->where() accepts an optional third parameter. If you set it to
FALSE, FSO will not try to protect your field or table names.

$builder->where('MATCH (field) AGAINST ("value")', NULL, FALSE);

$builder->orWhere()

This function is identical to the one above, except that multiple
instances are joined by OR:

$builder->where('name !=', $name);
$builder->orWhere('id >', $id); // Produces: WHERE name != 'Joe' OR id > 50

$builder->whereIn()

Generates a WHERE field IN (‘item’, ‘item’) SQL query joined with AND if
appropriate

$names = array('Frank', 'Todd', 'James');
$builder->whereIn('username', $names);
// Produces: WHERE username IN ('Frank', 'Todd', 'James')

$builder->orWhereIn()

Generates a WHERE field IN (‘item’, ‘item’) SQL query joined with OR if
appropriate

$names = array('Frank', 'Todd', 'James');
$builder->orWhereIn('username', $names);
// Produces: OR username IN ('Frank', 'Todd', 'James')

$builder->whereNotIn()

Generates a WHERE field NOT IN (‘item’, ‘item’) SQL query joined with
AND if appropriate

$names = array('Frank', 'Todd', 'James');
$builder->whereNotIn('username', $names);
// Produces: WHERE username NOT IN ('Frank', 'Todd', 'James')

$builder->orWhereNotIn()

Generates a WHERE field NOT IN (‘item’, ‘item’) SQL query joined with OR
if appropriate

$names = array('Frank', 'Todd', 'James');
$builder->orWhereNotIn('username', $names);
// Produces: OR username NOT IN ('Frank', 'Todd', 'James')

Looking for Similar Data

$builder->like()

This method enables you to generate LIKE clauses, useful for doing
searches.

Note

All values passed to this method are escaped automatically.

Note

All like* method variations can be forced to be perform case-insensitive searches by passing
a fifth parameter of true to the method. This will use platform-specific features where available
otherwise, will force the values to be lowercase, i.e. WHERE LOWER(column) LIKE '%search%'. This
may require indexes to be made for LOWER(column) instead of column to be effective.

	Simple key/value method:

$builder->like('title', 'match');
// Produces: WHERE `title` LIKE '%match%' ESCAPE '!'

If you use multiple method calls they will be chained together with
AND between them:

$builder->like('title', 'match');
$builder->like('body', 'match');
// WHERE `title` LIKE '%match%' ESCAPE '!' AND `body` LIKE '%match% ESCAPE '!'

If you want to control where the wildcard (%) is placed, you can use
an optional third argument. Your options are ‘before’, ‘after’ and
‘both’ (which is the default).

$builder->like('title', 'match', 'before'); // Produces: WHERE `title` LIKE '%match' ESCAPE '!'
$builder->like('title', 'match', 'after'); // Produces: WHERE `title` LIKE 'match%' ESCAPE '!'
$builder->like('title', 'match', 'both'); // Produces: WHERE `title` LIKE '%match%' ESCAPE '!'

	Associative array method:

$array = ['title' => $match, 'page1' => $match, 'page2' => $match];
$builder->like($array);
// WHERE `title` LIKE '%match%' ESCAPE '!' AND `page1` LIKE '%match%' ESCAPE '!' AND `page2` LIKE '%match%' ESCAPE '!'

$builder->orLike()

This method is identical to the one above, except that multiple
instances are joined by OR:

$builder->like('title', 'match'); $builder->orLike('body', $match);
// WHERE `title` LIKE '%match%' ESCAPE '!' OR `body` LIKE '%match%' ESCAPE '!'

$builder->notLike()

This method is identical to like(), except that it generates
NOT LIKE statements:

$builder->notLike('title', 'match'); // WHERE `title` NOT LIKE '%match% ESCAPE '!'

$builder->orNotLike()

This method is identical to notLike(), except that multiple
instances are joined by OR:

$builder->like('title', 'match');
$builder->orNotLike('body', 'match');
// WHERE `title` LIKE '%match% OR `body` NOT LIKE '%match%' ESCAPE '!'

$builder->groupBy()

Permits you to write the GROUP BY portion of your query:

$builder->groupBy("title"); // Produces: GROUP BY title

You can also pass an array of multiple values as well:

$builder->groupBy(array("title", "date")); // Produces: GROUP BY title, date

$builder->distinct()

Adds the “DISTINCT” keyword to a query

$builder->distinct();
$builder->get(); // Produces: SELECT DISTINCT * FROM mytable

$builder->having()

Permits you to write the HAVING portion of your query. There are 2
possible syntaxes, 1 argument or 2:

$builder->having('user_id = 45'); // Produces: HAVING user_id = 45
$builder->having('user_id', 45); // Produces: HAVING user_id = 45

You can also pass an array of multiple values as well:

$builder->having(['title =' => 'My Title', 'id <' => $id]);
// Produces: HAVING title = 'My Title', id < 45

If you are using a database that FSO escapes queries for, you
can prevent escaping content by passing an optional third argument, and
setting it to FALSE.

$builder->having('user_id', 45); // Produces: HAVING `user_id` = 45 in some databases such as MySQL
$builder->having('user_id', 45, FALSE); // Produces: HAVING user_id = 45

$builder->orHaving()

Identical to having(), only separates multiple clauses with “OR”.

Ordering results

$builder->orderBy()

Lets you set an ORDER BY clause.

The first parameter contains the name of the column you would like to order by.

The second parameter lets you set the direction of the result.
Options are ASC, DESC AND RANDOM.

$builder->orderBy('title', 'DESC');
// Produces: ORDER BY `title` DESC

You can also pass your own string in the first parameter:

$builder->orderBy('title DESC, name ASC');
// Produces: ORDER BY `title` DESC, `name` ASC

Or multiple function calls can be made if you need multiple fields.

$builder->orderBy('title', 'DESC');
$builder->orderBy('name', 'ASC');
// Produces: ORDER BY `title` DESC, `name` ASC

If you choose the RANDOM direction option, then the first parameters will
be ignored, unless you specify a numeric seed value.

$builder->orderBy('title', 'RANDOM');
// Produces: ORDER BY RAND()

$builder->orderBy(42, 'RANDOM');
// Produces: ORDER BY RAND(42)

Note

Random ordering is not currently supported in Oracle and
will default to ASC instead.

Limiting or Counting Results

$builder->limit()

Lets you limit the number of rows you would like returned by the query:

$builder->limit(10); // Produces: LIMIT 10

The second parameter lets you set a result offset.

$builder->limit(10, 20); // Produces: LIMIT 20, 10 (in MySQL. Other databases have slightly different syntax)

$builder->countAllResults()

Permits you to determine the number of rows in a particular Query
Builder query. Queries will accept Query Builder restrictors such as
where(), orWhere(), like(), orLike(), etc. Example:

echo $builder->countAllResults('my_table'); // Produces an integer, like 25
$builder->like('title', 'match');
$builder->from('my_table');
echo $builder->countAllResults(); // Produces an integer, like 17

However, this method also resets any field values that you may have passed
to select(). If you need to keep them, you can pass FALSE as the
second parameter:

echo $builder->countAllResults('my_table', FALSE);

$builder->countAll()

Permits you to determine the number of rows in a particular table.
Submit the table name in the first parameter. Example:

echo $builder->countAll('my_table'); // Produces an integer, like 25

Query grouping

Query grouping allows you to create groups of WHERE clauses by enclosing them in parentheses. This will allow
you to create queries with complex WHERE clauses. Nested groups are supported. Example:

$builder->select('*')->from('my_table')
 ->group_start()
 ->where('a', 'a')
 ->orGroupStart()
 ->where('b', 'b')
 ->where('c', 'c')
 ->groupEnd()
 ->groupEnd()
 ->where('d', 'd')
->get();

// Generates:
// SELECT * FROM (`my_table`) WHERE (`a` = 'a' OR (`b` = 'b' AND `c` = 'c')) AND `d` = 'd'

Note

groups need to be balanced, make sure every group_start() is matched by a group_end().

$builder->groupStart()

Starts a new group by adding an opening parenthesis to the WHERE clause of the query.

$builder->orGroupStart()

Starts a new group by adding an opening parenthesis to the WHERE clause of the query, prefixing it with ‘OR’.

$builder->notGroupStart()

Starts a new group by adding an opening parenthesis to the WHERE clause of the query, prefixing it with ‘NOT’.

$builder->orNotGroupStart()

Starts a new group by adding an opening parenthesis to the WHERE clause of the query, prefixing it with ‘OR NOT’.

$builder->groupEnd()

Ends the current group by adding an closing parenthesis to the WHERE clause of the query.

Inserting Data

$builder->insert()

Generates an insert string based on the data you supply, and runs the
query. You can either pass an array or an object to the
function. Here is an example using an array:

$data = array(
 'title' => 'My title',
 'name' => 'My Name',
 'date' => 'My date'
);

$builder->insert($data);
// Produces: INSERT INTO mytable (title, name, date) VALUES ('My title', 'My name', 'My date')

The first parameter is an associative array of values.

Here is an example using an object:

/*
class Myclass {
 public $title = 'My Title';
 public $content = 'My Content';
 public $date = 'My Date';
}
*/

$object = new Myclass;
$builder->insert($object);
// Produces: INSERT INTO mytable (title, content, date) VALUES ('My Title', 'My Content', 'My Date')

The first parameter is an object.

Note

All values are escaped automatically producing safer queries.

$builder->getCompiledInsert()

Compiles the insertion query just like $builder->insert() but does not
run the query. This method simply returns the SQL query as a string.

Example:

$data = array(
 'title' => 'My title',
 'name' => 'My Name',
 'date' => 'My date'
);

$sql = $builder->set($data)->getCompiledInsert('mytable');
echo $sql;

// Produces string: INSERT INTO mytable (`title`, `name`, `date`) VALUES ('My title', 'My name', 'My date')

The second parameter enables you to set whether or not the query builder query
will be reset (by default it will be–just like $builder->insert()):

echo $builder->set('title', 'My Title')->getCompiledInsert('mytable', FALSE);

// Produces string: INSERT INTO mytable (`title`) VALUES ('My Title')

echo $builder->set('content', 'My Content')->getCompiledInsert();

// Produces string: INSERT INTO mytable (`title`, `content`) VALUES ('My Title', 'My Content')

The key thing to notice in the above example is that the second query did not
utlize $builder->from() nor did it pass a table name into the first
parameter. The reason this worked is because the query has not been executed
using $builder->insert() which resets values or reset directly using
$builder->resetQuery().

Note

This method doesn’t work for batched inserts.

$builder->insertBatch()

Generates an insert string based on the data you supply, and runs the
query. You can either pass an array or an object to the
function. Here is an example using an array:

$data = array(
 array(
 'title' => 'My title',
 'name' => 'My Name',
 'date' => 'My date'
),
 array(
 'title' => 'Another title',
 'name' => 'Another Name',
 'date' => 'Another date'
)
);

$builder->insertBatch($data);
// Produces: INSERT INTO mytable (title, name, date) VALUES ('My title', 'My name', 'My date'), ('Another title', 'Another name', 'Another date')

The first parameter is an associative array of values.

Note

All values are escaped automatically producing safer queries.

Updating Data

$builder->replace()

This method executes a REPLACE statement, which is basically the SQL
standard for (optional) DELETE + INSERT, using PRIMARY and UNIQUE
keys as the determining factor.
In our case, it will save you from the need to implement complex
logics with different combinations of select(), update(),
delete() and insert() calls.

Example:

$data = array(
 'title' => 'My title',
 'name' => 'My Name',
 'date' => 'My date'
);

$builder->replace($data);

// Executes: REPLACE INTO mytable (title, name, date) VALUES ('My title', 'My name', 'My date')

In the above example, if we assume that the title field is our primary
key, then if a row containing ‘My title’ as the title value, that row
will be deleted with our new row data replacing it.

Usage of the set() method is also allowed and all fields are
automatically escaped, just like with insert().

$builder->set()

This function enables you to set values for inserts or updates.

It can be used instead of passing a data array directly to the insert
or update functions:

$builder->set('name', $name);
$builder->insert(); // Produces: INSERT INTO mytable (`name`) VALUES ('{$name}')

If you use multiple function called they will be assembled properly
based on whether you are doing an insert or an update:

$builder->set('name', $name);
$builder->set('title', $title);
$builder->set('status', $status);
$builder->insert();

set() will also accept an optional third parameter ($escape), that
will prevent data from being escaped if set to FALSE. To illustrate the
difference, here is set() used both with and without the escape
parameter.

$builder->set('field', 'field+1', FALSE);
$builder->where('id', 2);
$builder->update(); // gives UPDATE mytable SET field = field+1 WHERE `id` = 2

$builder->set('field', 'field+1');
$builder->where('id', 2);
$builder->update(); // gives UPDATE `mytable` SET `field` = 'field+1' WHERE `id` = 2

You can also pass an associative array to this function:

$array = array(
 'name' => $name,
 'title' => $title,
 'status' => $status
);

$builder->set($array);
$builder->insert();

Or an object:

/*
class Myclass {
 public $title = 'My Title';
 public $content = 'My Content';
 public $date = 'My Date';
}
*/

$object = new Myclass;
$builder->set($object);
$builder->insert();

$builder->update()

Generates an update string and runs the query based on the data you
supply. You can pass an array or an object to the function. Here
is an example using an array:

$data = array(
 'title' => $title,
 'name' => $name,
 'date' => $date
);

$builder->where('id', $id);
$builder->update($data);
// Produces:
//
// UPDATE mytable
// SET title = '{$title}', name = '{$name}', date = '{$date}'
// WHERE id = $id

Or you can supply an object:

/*
class Myclass {
 public $title = 'My Title';
 public $content = 'My Content';
 public $date = 'My Date';
}
*/

$object = new Myclass;
$builder->where('id', $id);
$builder->update($object);
// Produces:
//
// UPDATE `mytable`
// SET `title` = '{$title}', `name` = '{$name}', `date` = '{$date}'
// WHERE id = `$id`

Note

All values are escaped automatically producing safer queries.

You’ll notice the use of the $builder->where() function, enabling you
to set the WHERE clause. You can optionally pass this information
directly into the update function as a string:

$builder->update($data, "id = 4");

Or as an array:

$builder->update($data, array('id' => $id));

You may also use the $builder->set() function described above when
performing updates.

$builder->updateBatch()

Generates an update string based on the data you supply, and runs the query.
You can either pass an array or an object to the function.
Here is an example using an array:

$data = array(
 array(
 'title' => 'My title' ,
 'name' => 'My Name 2' ,
 'date' => 'My date 2'
),
 array(
 'title' => 'Another title' ,
 'name' => 'Another Name 2' ,
 'date' => 'Another date 2'
)
);

$builder->updateBatch($data, 'title');

// Produces:
// UPDATE `mytable` SET `name` = CASE
// WHEN `title` = 'My title' THEN 'My Name 2'
// WHEN `title` = 'Another title' THEN 'Another Name 2'
// ELSE `name` END,
// `date` = CASE
// WHEN `title` = 'My title' THEN 'My date 2'
// WHEN `title` = 'Another title' THEN 'Another date 2'
// ELSE `date` END
// WHERE `title` IN ('My title','Another title')

The first parameter is an associative array of values, the second parameter is the where key.

Note

All values are escaped automatically producing safer queries.

Note

affectedRows() won’t give you proper results with this method,
due to the very nature of how it works. Instead, updateBatch()
returns the number of rows affected.

$builder->getCompiledUpdate()

This works exactly the same way as $builder->getCompiledInsert() except
that it produces an UPDATE SQL string instead of an INSERT SQL string.

For more information view documentation for $builder->getCompiledInsert().

Note

This method doesn’t work for batched updates.

Deleting Data

$builder->delete()

Generates a delete SQL string and runs the query.

$builder->delete(array('id' => $id)); // Produces: // DELETE FROM mytable // WHERE id = $id

The first parameter is the where clause.
You can also use the where() or or_where() functions instead of passing
the data to the first parameter of the function:

$builder->where('id', $id);
$builder->delete();

// Produces:
// DELETE FROM mytable
// WHERE id = $id

If you want to delete all data from a table, you can use the truncate()
function, or empty_table().

$builder->emptyTable()

Generates a delete SQL string and runs the
query:

$builder->emptyTable('mytable'); // Produces: DELETE FROM mytable

$builder->truncate()

Generates a truncate SQL string and runs the query.

$builder->truncate();

// Produce:
// TRUNCATE mytable

Note

If the TRUNCATE command isn’t available, truncate() will
execute as “DELETE FROM table”.

$builder->getCompiledDelete()

This works exactly the same way as $builder->getCompiledInsert() except
that it produces a DELETE SQL string instead of an INSERT SQL string.

For more information view documentation for $builder->getCompiledInsert().

Method Chaining

Method chaining allows you to simplify your syntax by connecting
multiple functions. Consider this example:

$query = $builder->select('title')
 ->where('id', $id)
 ->limit(10, 20)
 ->get();

Resetting Query Builder

$builder->resetQuery()

Resetting Query Builder allows you to start fresh with your query without
executing it first using a method like $builder->get() or $builder->insert().

This is useful in situations where you are using Query Builder to generate SQL
(ex. $builder->getCompiledSelect()) but then choose to, for instance,
run the query:

// Note that the second parameter of the get_compiled_select method is FALSE
$sql = $builder->select(array('field1','field2'))
 ->where('field3',5)
 ->getCompiledSelect(false);

// ...
// Do something crazy with the SQL code... like add it to a cron script for
// later execution or something...
// ...

$data = $builder->get()->getResultArray();

// Would execute and return an array of results of the following query:
// SELECT field1, field1 from mytable where field3 = 5;

Class Reference

Generating Query Results

There are several ways to generate query results:

	Result Arrays

	Result Rows

	Custom Result Objects

	Result Helper Methods

	Class Reference

Result Arrays

getResult()

This method returns the query result as an array of objects, or
an empty array on failure. Typically you’ll use this in a foreach
loop, like this:

$query = $db->query("YOUR QUERY");

foreach ($query->getResult() as $row)
{
 echo $row->title;
 echo $row->name;
 echo $row->body;
}

The above method is an alias of getResultObject().

You can pass in the string ‘array’ if you wish to get your results
as an array of arrays:

$query = $db->query("YOUR QUERY");

 foreach ($query->getResult('array') as $row)
 {
 echo $row['title'];
 echo $row['name'];
 echo $row['body'];
 }

The above usage is an alias of getResultArray().

You can also pass a string to getResult() which represents a class to
instantiate for each result object

$query = $db->query("SELECT * FROM users;");

foreach ($query->getResult('User') as $user)
{
 echo $user->name; // access attributes
 echo $user->reverseName(); // or methods defined on the 'User' class
}

The above method is an alias of getCustomResultObject().

getResultArray()

This method returns the query result as a pure array, or an empty
array when no result is produced. Typically you’ll use this in a foreach
loop, like this:

$query = $db->query("YOUR QUERY");

foreach ($query->getResultArray() as $row)
{
 echo $row['title'];
 echo $row['name'];
 echo $row['body'];
}

Result Rows

getRow()

This method returns a single result row. If your query has more than
one row, it returns only the first row. The result is returned as an
object. Here’s a usage example:

$query = $db->query("YOUR QUERY");

$row = $query->getRow();

if (isset($row))
{
 echo $row->title;
 echo $row->name;
 echo $row->body;
}

If you want a specific row returned you can submit the row number as a
digit in the first parameter:

$row = $query->getRow(5);

You can also add a second String parameter, which is the name of a class
to instantiate the row with:

$query = $db->query("SELECT * FROM users LIMIT 1;");
$row = $query->getRow(0, 'User');

echo $row->name; // access attributes
echo $row->reverse_name(); // or methods defined on the 'User' class

getRowArray()

Identical to the above row() method, except it returns an array.
Example:

$query = $db->query("YOUR QUERY");

$row = $query->getRowArray();

if (isset($row))
{
 echo $row['title'];
 echo $row['name'];
 echo $row['body'];
}

If you want a specific row returned you can submit the row number as a
digit in the first parameter:

$row = $query->getRowArray(5);

In addition, you can walk forward/backwards/first/last through your
results using these variations:

$row = $query->getFirstRow()

$row = $query->getLastRow()

$row = $query->getNextRow()

$row = $query->getPreviousRow()

By default they return an object unless you put the word “array” in the
parameter:

$row = $query->getFirstRow(‘array’)

$row = $query->getLastRow(‘array’)

$row = $query->getNextRow(‘array’)

$row = $query->getPreviousRow(‘array’)

Note

All the methods above will load the whole result into memory
(prefetching). Use getUnbufferredRow() for processing large
result sets.

getUnbufferedRow()

This method returns a single result row without prefetching the whole
result in memory as row() does. If your query has more than one row,
it returns the current row and moves the internal data pointer ahead.

$query = $db->query("YOUR QUERY");

while ($row = $query->getUnbufferedRow())
{
 echo $row->title;
 echo $row->name;
 echo $row->body;
}

You can optionally pass ‘object’ (default) or ‘array’ in order to specify
the returned value’s type:

$query->getUnbufferedRow(); // object
$query->getUnbufferedRow('object'); // object
$query->getUnbufferedRow('array'); // associative array

Custom Result Objects

You can have the results returned as an instance of a custom class instead
of a stdClass or array, as the getResult() and getResultArray()
methods allow. If the class is not already loaded into memory, the Autoloader
will attempt to load it. The object will have all values returned from the
database set as properties. If these have been declared and are non-public
then you should provide a __set() method to allow them to be set.

Example:

class User
{
 public $id;
 public $email;
 public $username;

 protected $last_login;

 public function lastLogin($format)
 {
 return $this->lastLogin->format($format);
 }

 public function __set($name, $value)
 {
 if ($name === 'lastLogin')
 {
 $this->lastLogin = DateTime::createFromFormat('U', $value);
 }
 }

 public function __get($name)
 {
 if (isset($this->$name))
 {
 return $this->$name;
 }
 }
}

In addition to the two methods listed below, the following methods also can
take a class name to return the results as: getFirstRow(), getLastRow(),
getNextRow(), and getPreviousRow().

getCustomResultObject()

Returns the entire result set as an array of instances of the class requested.
The only parameter is the name of the class to instantiate.

Example:

$query = $db->query("YOUR QUERY");

$rows = $query->getCustomResultObject('User');

foreach ($rows as $row)
{
 echo $row->id;
 echo $row->email;
 echo $row->last_login('Y-m-d');
}

getCustomRowObject()

Returns a single row from your query results. The first parameter is the row
number of the results. The second parameter is the class name to instantiate.

Example:

$query = $db->query("YOUR QUERY");

$row = $query->getCustomRowObject(0, 'User');

if (isset($row))
{
 echo $row->email; // access attributes
 echo $row->last_login('Y-m-d'); // access class methods
}

You can also use the getRow() method in exactly the same way.

Example:

$row = $query->getCustomRowObject(0, 'User');

Result Helper Methods

getFieldCount()

The number of FIELDS (columns) returned by the query. Make sure to call
the method using your query result object:

$query = $db->query('SELECT * FROM my_table');

echo $query->getFieldCount();

getFieldNames()

Returns an array with the names of the FIELDS (columns) returned by the query.
Make sure to call the method using your query result object:

$query = $db->query('SELECT * FROM my_table');

 echo $query->getFieldNames();

freeResult()

It frees the memory associated with the result and deletes the result
resource ID. Normally PHP frees its memory automatically at the end of
script execution. However, if you are running a lot of queries in a
particular script you might want to free the result after each query
result has been generated in order to cut down on memory consumption.

Example:

$query = $thisdb->query('SELECT title FROM my_table');

foreach ($query->getResult() as $row)
{
 echo $row->title;
}

$query->freeResult(); // The $query result object will no longer be available

$query2 = $db->query('SELECT name FROM some_table');

$row = $query2->getRow();
echo $row->name;
$query2->freeResult(); // The $query2 result object will no longer be available

dataSeek()

This method sets the internal pointer for the next result row to be
fetched. It is only useful in combination with getUnbufferedRow().

It accepts a positive integer value, which defaults to 0 and returns
TRUE on success or FALSE on failure.

$query = $db->query('SELECT `field_name` FROM `table_name`');
$query->dataSeek(5); // Skip the first 5 rows
$row = $query->getUnbufferedRow();

Note

Not all database drivers support this feature and will return FALSE.
Most notably - you won’t be able to use it with PDO.

Class Reference

数据填充

数据填充是一种简单的将数据添加到数据库的方式。这在开发的过程中特别有用，你只需要准备开发中所需要的示例数据填充到数据库中，而且不仅如此，这些数据可以包括你不想要包括的迁移的静态数据，例如国家/地区，地理编码表，事件或设置信息等等。

数据填充是必须有 run() 方法的简单类，并继承于 FSODatabaseSeeder 。在 run() 中，该类可以创建你所需要的任何类型的数据。该类可以创建需要的任何形式的数据。它可以分别通过建立 $this->db 和 $this->forge 访问数据库连接。填充文件必须存储在 application/Database/Seeds 目录中。文件名和类名必须保持一致。

// application/Database/Seeds/SimpleSeeder.php
class SimpleSeeder extends \FSO\Database\Seeder
{
 public function run()
 {
 $data = [
 'username' => 'darth',
 'email' => 'darth@theempire.com'
];

 // Simple Queries
 $this->db->query("INSERT INTO users (username, email) VALUES(:username, :email)",
 $data
);

 // Using Query Builder
 $this->db->table('users')->insert($data);
 }
}

嵌套数据填充

你可以使用 call() 方法来运行其他的 seed 类。这允许你更容易使用 seeder，而且同时也将任务分发到各个 seeder 文件当中:

class TestSeeder extends \FSO\Database\Seeder
{
 public function run()
 {
 $this->call('UserSeeder');
 $this->call('CountrySeeder');
 $this->call('JobSeeder');
 }
}

你也可以在 call() 方法中使用完全合格的类名，使你的 seeder 在任何地方都可以更好的加载。这对于更多模块化代码库来说非常方便:

public function run()
{
 $this->call('UserSeeder');
 $this->call('My\Database\Seeds\CountrySeeder');
}

使用 Seeders

你可以通过数据库配置类获取主 seeder

$seeder = ConfigDatabase::seeder();
$seeder->call(‘TestSeeder’);

命令行填充数

如果不想创建专用控制器，也可以从命令行填充数据，作为 Migrations CLI 工具的一部分:

> php index.php migrations seed TestSeeder

Transactions

FSO’s database abstraction allows you to use transactions with
databases that support transaction-safe table types. In MySQL, you’ll
need to be running InnoDB or BDB table types rather than the more common
MyISAM. Most other database platforms support transactions natively.

If you are not familiar with transactions we recommend you find a good
online resource to learn about them for your particular database. The
information below assumes you have a basic understanding of
transactions.

FSO’s Approach to Transactions

FSO utilizes an approach to transactions that is very similar to
the process used by the popular database class ADODB. We’ve chosen that
approach because it greatly simplifies the process of running
transactions. In most cases all that is required are two lines of code.

Traditionally, transactions have required a fair amount of work to
implement since they demand that you keep track of your queries and
determine whether to commit or rollback based on the success or failure
of your queries. This is particularly cumbersome with nested queries. In
contrast, we’ve implemented a smart transaction system that does all
this for you automatically (you can also manage your transactions
manually if you choose to, but there’s really no benefit).

Running Transactions

To run your queries using transactions you will use the
$this->db->transStart() and $this->db->transComplete() functions as
follows:

$this->db->transStart();
$this->db->query('AN SQL QUERY...');
$this->db->query('ANOTHER QUERY...');
$this->db->query('AND YET ANOTHER QUERY...');
$this->db->transComplete();

You can run as many queries as you want between the start/complete
functions and they will all be committed or rolled back based on success
or failure of any given query.

Strict Mode

By default FSO runs all transactions in Strict Mode. When strict
mode is enabled, if you are running multiple groups of transactions, if
one group fails all groups will be rolled back. If strict mode is
disabled, each group is treated independently, meaning a failure of one
group will not affect any others.

Strict Mode can be disabled as follows:

$this->db->transStrict(false);

Managing Errors

If you have error reporting enabled in your Config/Database.php file
you’ll see a standard error message if the commit was unsuccessful. If
debugging is turned off, you can manage your own errors like this:

$this->db->transStart();
$this->db->query('AN SQL QUERY...');
$this->db->query('ANOTHER QUERY...');
$this->db->transComplete();

if ($this->db->transStatus() === FALSE)
{
 // generate an error... or use the log_message() function to log your error
}

Enabling Transactions

Transactions are enabled automatically the moment you use
$this->db->transStart(). If you would like to disable transactions you
can do so using $this->db->transOff():

$this->db->transOff();

$this->db->trans_Start();
$this->db->query('AN SQL QUERY...');
$this->db->transComplete();

When transactions are disabled, your queries will be auto-commited, just
as they are when running queries without transactions.

Test Mode

You can optionally put the transaction system into “test mode”, which
will cause your queries to be rolled back – even if the queries produce
a valid result. To use test mode simply set the first parameter in the
$this->db->transStart() function to TRUE:

$this->db->transStart(true); // Query will be rolled back
$this->db->query('AN SQL QUERY...');
$this->db->transComplete();

Running Transactions Manually

If you would like to run transactions manually you can do so as follows:

$this->db->transBegin();

$this->db->query('AN SQL QUERY...');
$this->db->query('ANOTHER QUERY...');
$this->db->query('AND YET ANOTHER QUERY...');

if ($this->db->transStatus() === FALSE)
{
 $this->db->transRollback();
}
else
{
 $this->db->transCommit();
}

Note

Make sure to use $this->db->transBegin() when running manual
transactions, NOT $this->db->transStart().

在视图文件中使用PHP替代语法

如果你不使用模板引擎来简化输出，那么意味着你将在视图文件中使用纯 PHP 语法。为了精简视图文件中的 PHP 代码同时增强代码的可读性，建议你在写控制结构和 echo 语句时使用 PHP 的替代语法。如果你对这个语法还不熟悉，下面将介绍如何通过这个语法来消除你代码中的大括号和 echo 语句。

Echo 的替代语法

通常来说，你在输出或打印一个变量的时候会这样做:

<?php echo $variable; ?>

而使用替代语法，你可以写成这样:

<?= $variable?>

控制结构的替代语法

像 if、for、foreach、while 这样的控制结构也可以写成简化格式。下面以 foreach 举例:

<?php foreach ($todo as $item) : ?>

 <?= $item ?>

<?php endforeach ?>

注意这里没有任何括号，结束括号被 endforeach 取而代之。上面列举出的那些控制结构都有相似的结束标志: endif, endfor, endforeach 和 endwhile。

同时要注意的是，每个结构分支后面都要跟一个冒号(除了最后一个)，而不是分号,这很重要!

这是另外一个样例，使用了 if/elseif/else，注意看分支语句后的冒号:

<?php if ($username === 'sally') : ?>

 <h3>Hi Sally</h3>

<?php elseif ($username === 'joe') : ?>

 <h3>Hi Joe</h3>

<?php else : ?>

 <h3>Hi unknown user</h3>

<?php endif ?>

网页缓存

FSO 可以让你通过缓存页面来达到更好的性能。

尽管 FSO 已经相当高效了，但是网页中的动态内容、主机的内存 CPU 和数据库读取速度等因素直接影响了网页的加载速度。 依靠网页缓存， 你的网页可以达到近乎静态网页的加载速度，因为程序的输出结果 已经保存下来了。

缓存是如何工作的？

可以针对到每个独立的页面进行缓存，并且你可以设置每个页面缓存的更新时间。 当页面第一次加载时，缓存将被写入到 application/cache 目录下的文件中去。 之后请求这个页面时，就可以直接从缓存文件中读取内容并输出到用户的浏览器。 如果缓存过期，会在输出之前被删除并重新刷新。

Note

基准标记没有缓存，所以当缓存启用时，仍然可以查看页面加载速度。

开启缓存

将下面的代码放到任何一个控制器的方法内，你就可以开启缓存了:

$this->cachePage($n);

其中 $n 是缓存更新的时间（单位分钟）。

上面的代码可以放在方法的任何位置它出现的顺序对缓存没有影响，所以你可以把它放到任何你认为合理的地方。一旦该代码被放在方法内，你的页面就开始被缓存了。

Important

如果你修改了可能影响页面输出的配置，你需要手动删除你的缓存文件。

Note

在写入缓存文件之前，必须通过编辑 application/Config/Cache.php 文件来设置缓存引擎。

删除缓存

如果你不再需要缓存某个页面，你可以删除掉该页面上的缓存代码，这样它在过期之后就不会刷新了。

Note

删除缓存代码之后并不是立即生效，必须等到缓存过期才会生效。

Running via the CLI

As well as calling an applications Controllers
via the URL in a browser they can also be loaded via the command-line
interface (CLI).

Page Contents

	Running via the CLI

	What is the CLI?

	Why run via the command-line?

	Let’s try it: Hello World!

	That’s the basics!

	CLI-Only Routing

	The CLI Library

What is the CLI?

The command-line interface is a text-based method of interacting with
computers. For more information, check the Wikipedia
article [http://en.wikipedia.org/wiki/Command-line_interface].

Why run via the command-line?

There are many reasons for running FSO from the command-line,
but they are not always obvious.

	Run your cron-jobs without needing to use wget or curl.

	Make your cron-jobs inaccessible from being loaded in the URL by
checking the return value of :php:func:`is_cli()`.

	Make interactive “tasks” that can do things like set permissions,
prune cache folders, run backups, etc.

	Integrate with other applications in other languages. For example, a
random C++ script could call one command and run code in your models!

Let’s try it: Hello World!

Let’s create a simple controller so you can see it in action. Using your
text editor, create a file called Tools.php, and put the following code
in it:

<?php
class Tools extends \FSO\Controller {

 public function message($to = 'World')
 {
 echo "Hello {$to}!".PHP_EOL;
 }
}

Then save the file to your application/Controllers/ directory.

Now normally you would visit the your site using a URL similar to this:

example.com/index.php/tools/message/to

Instead, we are going to open Terminal in Mac/Linux or go to Run > “cmd”
in Windows and navigate to our FSO project’s web root.

$ cd /path/to/project/public
$ php index.php tools message

If you did it right, you should see Hello World! printed.

$ php index.php tools message "John Smith"

Here we are passing it a argument in the same way that URL parameters
work. “John Smith” is passed as a argument and output is:

Hello John Smith!

That’s the basics!

That, in a nutshell, is all there is to know about controllers on the
command line. Remember that this is just a normal controller, so routing
and _remap() works fine.

However, FSO provides additional tools to make creating CLI-accessible
scripts even more pleasant, include CLI-only routing, and a library that helps
you with CLI-only tools.

CLI-Only Routing

In your Routes.php file you can create routes that are only accessible from
the CLI as easily as you would create any other route. Instead of using the get(),
post(), or similar method, you would use the cli() method. Everything else
works exactly like a normal route definition:

$routes->cli('tools/message/(:segment)', 'Tools::message/$1');

For more information, see the Routes page.

The CLI Library

The CLI library makes working with the CLI interface simple.
It provides easy ways to output text in multiple colors to the terminal window. It also
allows you to prompt a user for information, making it easy to build flexible, smart tools.

See the CLI Library page for detailed information.

Custom CLI Commands

While the ability to use cli commands like any other route is convenient, you might find times where you
need a little something different. That’s where CLI Commands come in. They are simple classes that do not
need to have routes defined for, making them perfect for building tools that developers can use to make
their jobs simpler, whether by handling migrations or database seeding, checking cronjob status, or even
building out custom code generators for your company.

Page Contents

	Custom CLI Commands

	Running Commands

	Using Help Command

	Creating New Commands

	File Location

	An Example Command

	run()

	BaseCommand

Running Commands

Commands are run from the command line, in the root directory. The same one that holds the /application
and /system directories. A custom script, spark has been provided that is used to run any of the
cli commands:

> php spark

When called without specifying a command, a simple help page is displayed that also provides a list of
available commands. You should pass the name of the command as the first argument to run that command:

> php spark migrate

Some commands take additional arguments, which should be provided directly after the command, separated by spaces:

> php spark db:seed DevUserSeeder

For all of the commands FSO provides, if you do not provide the required arguments, you will be prompted
for the information it needs to run correctly:

> php spark migrate:version
> Version?

Using Help Command

You can get help about any CLI command using the help command as follows:

> php spark help db:seed

Creating New Commands

You can very easily create new commands to use in your own development. Each class must be in its own file,
and must extend FSO\CLI\BaseCommand, and implement the run() method.

The following properties should be used in order to get listed in CLI commands and to add help functionality to your command:

	($group): a string to describe the group the command is lumped under when listing commands. For example (Database)

	($name): a string to describe the command’s name. For example (migrate:create)

	($description): a string to describe the command. For example (Creates a new migration file.)

	($usage): a string to describe the command usage. For example (migrate:create [migration_name] [Options])

	($arguments): an array of strings to describe each command argument. For example (‘migration_name’ => ‘The migration file name’)

	($options): an array of strings to describe each command option. For example (‘-n’ => ‘Set migration namespace’)

Help description will be automatically generated according to the above parameters.

File Location

Commands must be stored within a directory named Commands. However, that directory can be located anywhere
that the Autoloader can locate it. This could be in /application/Commands, or
a directory that you keep commands in to use in all of your project development, like Acme/Commands.

Note

When the commands are executed, the full FSO cli environment has been loaded, making it
possible to get environment information, path information, and to use any of the tools you would use when making a Controller.

An Example Command

Let’s step through an example command whose only function is to report basic information about the application
itself, for demonstration purposes. Start by creating a new file at /application/Commands/AppInfo.php. It
should contain the following code:

<?php namespace App\Commands;

use FSO\CLI\BaseCommand;

class AppInfo extends BaseCommand
{
 protected $group = 'demo';
 protected $name = 'app:info';
 protected $description = 'Displays basic application information.';

 public function run(array $params)
 {

 }
}

If you run the list command, you will see the new command listed under its own demo group. If you take
a close look, you should see how this works fairly easily. The $group property simply tells it how to organize
this command with all of the other commands that exist, telling it what heading to list it under.

The $name property is the name this command can be called by. The only requirement is that it must not contain
a space, and all characters must be valid on the command line itself. By convention, though, commands are lowercase,
with further grouping of commands being done by using a colon with the command name itself. This helps keep
multiple commands from having naming collisions.

The final property, $description is a short string that is displayed in the list command and should describe
what the command does.

run()

The run() method is the method that is called when the command is being run. The $params array is a list of
any cli arguments after the command name for your use. If the cli string was:

> php spark foo bar baz

Then foo is the command name, and the $params array would be:

$params = ['bar', 'baz'];

This can also be accessed through the CLI library, but this already has your command removed
from the string. These parameters can be used to customize how your scripts behave.

Our demo command might have a run method something like:

public function run(array $params)
{
 CLI::write('PHP Version: '. CLI::color(phpversion(), 'yellow'));
 CLI::write('CI Version: '. CLI::color(FSO::CI_VERSION, 'yellow'));
 CLI::write('APPPATH: '. CLI::color(APPPATH, 'yellow'));
 CLI::write('BASEPATH: '. CLI::color(BASEPATH, 'yellow'));
 CLI::write('ROOTPATH: '. CLI::color(ROOTPATH, 'yellow'));
 CLI::write('Included files: '. CLI::color(count(get_included_files()), 'yellow'));
}

BaseCommand

The BaseCommand class that all commands must extend have a couple of helpful utility methods that you should
be familiar with when creating your own commands. It also has a Logger available at
$this->logger.

Global Functions and Constants

FSO uses provides a few functions and variables that are globally defined, and are available to you at any point.
These do not require loading any additional libraries or helpers.

Page Contents

	Global Functions

	Service Accessors

	Miscellaneous Functions

	Global Constants

	Core Constants

	Time Constants

Global Functions

Service Accessors

Miscellaneous Functions

Global Constants

The following constants are always available anywhere within your application.

Core Constants

Time Constants

利用配置文件开始工作

每一个项目，都需要一种方法来定义不同的全局配置项，而这通常是借助配置文件来实现的。
而配置文件，一般来说，是通过声明一个将所有的配置项作为公开属性的类，来实现这一配置过程的。
不同于许多其他的框架，在CI4中，不需要访问某个具体的类来修改我们的配置项信息。
取而代之的是，我们仅仅需要创建一个配置类的实例，从而轻而易举的实现配置流程。

访问配置文件

我们可以通过创建一个新的配置类实例，来访问类中的配置项。
配置类中所有的这些属性都是公开的，故而可以如调用其他属性一样调用相应的配置项:

$config = new \Config\EmailConfig();

// 如类属性一样调用配置项
$protocol = $config->protocol;
$mailpath = $config->mailpath;

若没有给定namespace(命名空间），框架会在所有可用的、已被定义的命名空间中搜寻所需的文件，就如同 /application/Config/ 一样。
所以Codeigniter里所有的配置文件都应当被放置在 Config 这一命名空间下。
由于框架可以确切地了解配置文件所在目录的的位置，从而不必扫描文件系统中的不同区域；故而在我们的项目中，使用命名空间将会有效地提升性能。

我们也可以通过使用一个不同的命名空间，从而在服务器的任意位置上部署所需的配置文件。
这一举措可以让我们将生产环境的服务器中的配置文件移动到一个不能通过Web访问的位置；而在开发环境中，将其放置在 /application 目录下以便访问。

创建配置文件

当我们需要创建一个新的配置文件时，需要在指定位置创建一个新的文件，例如在默认的 /aplication/Config 目录下。然后创建一个带有公开属性的类，从而放置相应的配置信息:

<?php namespace Config;

class App extends \FSO\Config\BaseConfig {

 public $siteName = 'My Great Site';
 public $siteEmail = 'webmaster@example.com';

}

这个类应当继承 \FSO\Config\BaseConfig 从而保证框架可以得到具体环境下的配置信息。

针对不同的环境

由于我们的站点将会在不同的环境中运行，例如开发者的本地机器上，或是用于部署的远端服务器上，我们可以基于环境来修改配置信息。
在这基础上，我们将能够根据站点所运行的服务器，来使用不同的配置信息。这些包括并不限于数据库配置信息，API认证信息，以及其他的根据部署环境而改变的配置信息。

我们可以将这些值保存在根目录下的一个 .env 文件中，就如system和application目录一样。这个文件就如一个.ini配置文件一样，由许多对被等号分割的键/值对所组成:

S3_BUCKET="dotenv"
SECRET_KEY="super_secret_key"

当这些变量已经在环境中被定义时，它们将不会被重复定义。

Important

确保 .env 类型的文件已经添加到 .gitignore （或是相同类型的其他版本控制系统）中，从而保证在代码中不会被上传。
若这一举措未能成功，则可能会导致该目录中的相关敏感认证信息能够被任何人随意访问。

创建一个类似于 .env.example 的，其中包含了所有我们的项目所需的，仅设置了配置项的空值或默认值的模板文件，是一个不错的方法。
在不同的环境里，我们可以把这个文件复制到 .env 目录下并填充这个环境相对应的配置项的值。

当应用开始运行时，这个文件将会被自动加载，同时这些变量也会被运行环境所调用——这一过程适用于除生产环境外的其他环境的部署：在这些环境中变量应当被通过类似于.htaceess一样的文件所设置的getServer方法所支持。
在这之后，这些变量将通过 getenv(), $_SERVER, and $_ENV 的方式被调用。在这三者中， getenv() 方法由于其大小写不敏感而被推荐使用:

$s3_bucket = getenv('S3_BUCKET');
$s3_bucket = $_ENV['S3_BUCKET'];
$s3_bucket = $_SERVER['S3_BUCKET'];

嵌套变量

为了减少输入，我们也可以用将变量名包裹在 ${...} 的形式，来重用先前定义过的变量:

BASE_DIR="/var/webroot/project-root"
CACHE_DIR="${BASE_DIR}/cache"
TMP_DIR="${BASE_DIR}/tmp"

命名空间中的变量

有时候，我们会遇到多个变量具有相同名字的情况。当这种情况发生时，系统将没有办法获知这个变量所对应的确切的值。
我们可以通过将这些变量放入”命名空间“中，来放置这一情况的出现。

在配置文件中，点号(.)通常被用来表示一个变量是命名空间变量。这种变量通常是由一个独立前缀，后接一个点号(.)然后才是变量名称本身所组成的:

// 非命名空间变量
name = "George"
db=my_db

// 命名空间变量
address.city = "Berlin"
address.country = "Germany"
frontend.db = sales
backend.db = admin
BackEnd.db = admin

将环境变量并入配置中

当实例化一个配置文件时，所有的命名空间中的环境变量都将会被并入到这个实例对象的属性中。

如果一个命名空间变量的前缀（以大小写敏感的方式）可以正确匹配到配置类的名称，那么这个变量名的剩余部分（点号后面的部分）将会被当做一个配置项属性。
如果这个变量能够匹配到一个已经存在的配置项属性，那么相对应的配置项属性值将会被覆盖。当没有匹配到时，配置项属性值将不会被更改。

对于”短前缀“而言也是如此，当环境变量的前缀匹配到一个被转换到小写的配置类名时，首字母也将被替换成相对应的大小写情况。

以数组的方式调用环境变量

从更长远的角度来看，一个命名空间环境变量也可以以数组的方式被调用。
如果一个命名空间环境变量的前缀与某个配置类所匹配，那么这个变量的剩余部分，若同样包含点号，则将会被当做一个数组的引用来调用:

// 常规的命名空间变量
SimpleConfig.name = George

// 数组化的命名空间变量
SimpleConfig.address.city = "Berlin"
SimpleConfig.address.country = "Germany"

如果这个变量是对SimpleConfig配置类的成员的引用，上述例子将会如下图所示:

$address['city'] = "Berlin";
$address['country'] = "Germany";

而 $address 属性的其他部分将不会被改动。

我们同样可以将数组属性名作为前缀来使用，当配置文件如下所示时:

// array namespaced variables
SimpleConfig.address.city = "Berlin"
address.country = "Germany"

结果与原来的相同

注册器

一个配置文件可以指定任意数量的”注册器“；这里所指的注册器为其他类可能提供的额外的配置属性。
这一行为通常通过在配置文件中增加一个 registrars 属性来实现，这一属性存有一个可选的注册器数组。:

protected $registrars = [
 SupportingPackageRegistrar::class
];

为了实现”注册器“的功能，这些类中必须声明一个与配置类同名的静态方法，而这一方法应当返回一个包含有属性配置项的关联数组。

当我们实例化了一个配置类的对象后，系统将自动循环搜索在 $registrars 中指定的类。
对于这些类而言，当其中包含有与该配置类同名的方法时，框架将调用这一方法，并将其返回的所有属性，如同上节所述的命名空间变量一样，并入到配置项中。

配置类举例如下:

namespace App\Config;
class MySalesConfig extends \FSO\Config\BaseConfig {
 public $target = 100;
 public $campaign = "Winter Wonderland";
 protected $registrars = [
 '\App\Models\RegionalSales';
];
}

… 所关联的地区销售模型将如下所示:

namespace App\Models;
class RegionalSales {
 public static function MySalesConfig() {
 return ['target' => 45, 'actual' => 72];
 }
}

如上所示，当 MySalesConfig 被实例化后，它将以两个属性的被声明而结束，然而 $target 属性将会被 RegionalSalesModel 的注册器所覆盖，故而最终的配置属性为:

$target = 45;
$campaign = "Winter Wonderland";

控制器

控制器是你整个应用的核心，因为它们决定了 HTTP 请求将被如何处理。

目录

	控制器

	什么是控制器?

	让我们试试看：Hello World！

	方法

	通过 URI 分段向你的方法传递参数

	定义默认控制器

	重映射方法

	私有方法

	将控制器放入子目录中

	构造函数

	包含属性

	Request 对象

	Response 对象

	Logger 对象

	forceHTTPS

	辅助函数

	验证 $_POST 数据

	就这样了！

什么是控制器?

简而言之，一个控制器就是一个类文件，是以一种能够和 URI 关联在一起的方式来命名的。

考虑下面的 URI:

example.com/index.php/blog/

上例中，FSO 将会尝试查询一个名为 Blog.php 的控制器并加载它。

当控制器的名称和 URI 的第一段匹配上时，它将会被加载。

让我们试试看：Hello World！

接下来你会看到如何创建一个简单的控制器，打开你的文本编辑器，新建一个文件 Blog.php ， 然后放入以下代码:

<?php
class Blog extends \FSO\Controller
{
 public function index()
 {
 echo 'Hello World!';
 }
}

然后将文件保存到 /application/controllers/ 目录下。

Important

文件名必须是大写字母开头，如：’Blog.php’ 。

现在使用类似下面的 URL 来访问你的站点:：

example.com/index.php/blog

如果一切正常，你将看到：:

Hello World!

Important

类名必须以大写字母开头。

这是有效的:

<?php
class Blog extends \FSO\Controller {

}

这是 无效 的:

<?php
class blog extends \FSO\Controller {

}

另外，一定要确保你的控制器继承了父控制器类，这样它才能使用父类的方法。

方法

上例中，方法名为 index() 。”index” 方法总是在 URI 的 第二段 为空时被调用。 另一种显示 “Hello World” 消息的方法是:

example.com/index.php/blog/index/

URI 中的第二段用于决定调用控制器中的哪个方法。

让我们试一下，向你的控制器添加一个新的方法:

<?php
class Blog extends \FSO\Controller {

 public function index()
 {
 echo 'Hello World!';
 }

 public function comments()
 {
 echo 'Look at this!';
 }
}

现在，通过下面的 URL 来调用 comments 方法:

example.com/index.php/blog/comments/

你应该能看到你的新消息了。

通过 URI 分段向你的方法传递参数

如果你的 URI 多于两个段，多余的段将作为参数传递到你的方法中。

例如，假设你的 URI 是这样:

example.com/index.php/products/shoes/sandals/123

你的方法将会收到第三段和第四段两个参数（”sandals” 和 “123”）:

<?php
class Products extends \FSO\Controller {

 public function shoes($sandals, $id)
 {
 echo $sandals;
 echo $id;
 }
}

Important

如果你使用了 URI 路由 ，传递到你的方法的参数将是路由后的参数。

定义默认控制器

FSO 可以设置一个默认的控制器，当 URI 没有分段参数时加载，例如当用户直接访问你网站的首页时。 打开 application/config/routes.php 文件，通过下面的参数指定一个默认的控制器:

$routes->setDefaultController('Blog');

其中，“Blog”是你想加载的控制器类名，如果你现在通过不带任何参数的 index.php 访问你的站点，你将看到你的“Hello World”消息。

想要了解更多信息，请参阅 ./source/general/routing.rst 部分文档。

重映射方法

正如上文所说，URI 的第二段通常决定控制器的哪个方法被调用。FSO 允许你使用 _remap() 方法来重写该规则:

public function _remap()
{
 // Some code here...
}

Important

如果你的控制包含一个 _remap() 方法，那么无论 URI 中包含什么参数时都会调用该方法。 它允许你定义你自己的路由规则，重写默认的使用 URI 中的分段来决定调用哪个方法这种行为。

被重写的方法（通常是 URI 的第二段）将被作为参数传递到 _remap() 方法:

public function _remap($method)
{
 if ($method === 'some_method')
 {
 $this->$method();
 }
 else
 {
 $this->default_method();
 }
}

方法名之后的所有其他段将作为 _remap() 方法的第二个参数，它是可选的。这个参数可以使用 PHP 的 call_user_func_array() 函数来模拟 FSO 的默认行为。

例如:

public function _remap($method, ...$params)
{
 $method = 'process_'.$method;
 if (method_exists($this, $method))
 {
 return $this->$method(...$params);
 }
 show_404();
}

私有方法

有时候你可能希望某些方法不能被公开访问，要实现这点，只要简单的将方法声明为 private 或 protected ， 这样这个方法就不能被 URL 访问到了。例如，如果你有一个下面这个方法:

protected function utility()
{
 // some code
}

使用下面的 URL 尝试访问它，你会发现是无法访问的:

example.com/index.php/blog/utility/

将控制器放入子目录中

如果你正在构建一个比较大的应用，那么将控制器放到子目录下进行组织可能会方便一点。FSO 也可以实现这一点。

你只需要简单的在 application/controllers/ 目录下创建新的目录，并将控制器文件放到子目录下。

Note

当使用该功能时，URI 的第一段必须指定目录，例如，假设你在如下位置有一个控制器:

application/controllers/products/Shoes.php

为了调用该控制器，你的 URI 应该像下面这样:

example.com/index.php/products/shoes/show/123

每个子目录包含一个默认控制器，将在 URL 只包含子目录的时候被调用。默认控制器在 application/Config/Routes.php 中定义。

你也可以使用 FSO 的 ./source/general/routing.rst 功能来重定向 URI。

构造函数

如果你打算在你的控制器中使用构造函数，你 必须 将下面这行代码放在里面:：

parent::__construct(…$params);

原因是你的构造函数将会覆盖父类的构造函数，所以我们要手工的调用它。

例如:

<?php
class Blog extends \FSO\Controller
{
 public function __construct(...$params)
 {
 parent::__construct(...$params);

 // Your own constructor code
 }
}

如果你需要在你的类被初始化时设置一些默认值，或者进行一些默认处理，构造函数将很有用。 构造函数没有返回值，但是可以执行一些默认操作。

包含属性

你创建的每一个 controller 都应该继承 FSO\Controller 类。这个类提供了适合所有控制器的几个属性。

Request 对象

$this->request 作为应用程序的主要属性 ./source/libraries/request.rst 是可以一直被使用的类属性。

Response 对象

$this->response 作为应用程序的主要属性 ./source/libraries/response.rst 是可以一直被使用的类属性。

Logger 对象

$this->logger 类实例 ./source/general/logging.rst 是可以一直被使用的类属性。

forceHTTPS

一种强制通过 HTTPS 访问方法的便捷方法，在所有控制器中都是可用的:

if (! $this->request->isSecure())
{
 $this->forceHTTPS();
}

默认情况下，在支持 HTTP 严格传输安全报头的现代浏览器中，此调用应强制浏览器将非 HTTPS 调用转换为一年的 HTTPS 调用。你可以通过将持续时间（以秒为单位）作为第一个参数来修改。

if (! $this->request->isSecure())
{
 $this->forceHTTPS(31536000); // one year
}

Note

你可以使用更多全局变量和函数 ./source/general/common_functions.rst ，包括 年、月等等。

辅助函数

你可以定义一个辅助文件数组作为类属性。每当控制器被加载时，
这些辅助文件将自动加载到内存中，这样就可以在控制器的任何地方使用它们的方法。:

class MyController extends \FSO\Controller
{
 protected $helpers = ['url', 'form'];
}

验证 $_POST 数据

控制器还提供了一个简单方便的方法来验证 $_POST 数据，将一组规则作为第一个参数进行验证，如果验证不通过，可以选择显示一组自定义错误消息。你可以通过 $this->request 这个用法获取 POST 数据。 Validation Library docs 是有关规则和消息数组的格式以及可用规则的详细信息。

public function updateUser(int $userID)
{
 if (! $this->validate([
 'email' => "required|is_unique[users.email,id,{$userID}]",
 'name' => 'required|alpha_numeric_spaces'
]))
 {
 return view('users/update', [
 'errors' => $this->errors
]);
 }

 // do something here if successful...
}

如果你觉得在配置文件中保存规则更简单，你可以通过在 Config\Validation.php 中定义代替 $rules 数组

public function updateUser(int $userID)
{
 if (! $this->validate('userRules'))
 {
 return view('users/update', [
 'errors' => $this->errors
]);
 }

 // do something here if successful...
}

Note

验证也可以在模型中自动处理。你可以在任何地方处理，你会发现控制器中的一些情况比模型简单，反之亦然。

就这样了！

OK，总的来说，这就是关于控制器的所有内容了。

Creating Core System Classes

Every time FSO runs there are several base classes that are initialized automatically as part of the core
framework. It is possible, however, to swap any of the core system classes with your own version or even just extend
the core versions.

Most users will never have any need to do this, but the option to replace or extend them does exist for those
who would like to significantly alter the FSO core.

Note

Messing with a core system class has a lot of implications, so make sure you know what you are doing before
attempting it.

System Class List

The following is a list of the core system files that are invoked every time FSO runs:

	Config\Services

	FSO\Autoloader\Autoloader

	FSO\Config\DotEnv

	FSO\Controller

	FSO\Debug\Exceptions

	FSO\Debug\Timer

	FSO\Events\Events

	FSO\HTTP\CLIRequest (if launched from command line only)

	FSO\HTTP\IncomingRequest (if launched over HTTP)

	FSO\HTTP\Request

	FSO\HTTP\Response

	FSO\HTTP\Message

	FSO\Log\Logger

	FSO\Log\Handlers\BaseHandler

	FSO\Log\Handlers\FileHandler

	FSO\Router\RouteCollection

	FSO\Router\Router

	FSO\Security\Security

	FSO\View\View

	FSO\View\Escaper

Replacing Core Classes

To use one of your own system classes instead of a default one, ensure that the Autoloader
can find your class, that your new class extends the appropriate interface, and modify the appropriate
Service to load your class in place of the core class.

For example, if you have a new App\Libraries\RouteCollection class that you would like to use in place of
the core system class, you would create your class like this:

namespace App\Libraries;

class RouteCollection implements \FSO\Router\RouteCollectionInterface
{

}

Then you would modify the routes service to load your class instead:

public static function routes($getShared = false)
{
 if (! $getShared)
 {
 return new \App\Libraries\RouteCollection();
 }

 return self::getSharedInstance('routes');
}

Extending Core Classes

If all you need to is add some functionality to an existing library - perhaps add a method or two - then it’s overkill
to recreate the entire library. In this case it’s better to simply extend the class. Extending the class is nearly
identical to replacing a class with a one exception:

	The class declaration must extend the parent class.

For example, to extend the native RouteCollection class, you would declare your class with:

class RouteCollection extends \FSO\Router\RouteCollection
{

}

If you need to use a constructor in your class make sure you extend the parent constructor:

class RouteCollection implements \FSO\Router\RouteCollection
{
 public function __construct()
 {
 parent::__construct();
 }
}

Tip: Any functions in your class that are named identically to the methods in the parent class will be used
instead of the native ones (this is known as “method overriding”). This allows you to substantially alter the FSO core.

If you are extending the Controller core class, then be sure to extend your new class in your application controller’s
constructors:

class Home extends App\BaseController {

}

Debugging Your Application

Table of Contents

	Debugging Your Application

	Replace var_dump

	Enabling Kint

	Using Kint

	The Debug Toolbar

	Enabling the Toolbar

	Setting Benchmark Points

	Creating Custom Collectors

Replace var_dump

While using XDebug and a good IDE can be indispensable to debug your application, sometimes a quick var_dump() is
all you need. FSO makes that even better by bundling in the excellent Kint [https://raveren.github.io/kint/]
debugging tool for PHP. This goes way beyond your usual tool, providing many alternate pieces of data, like formatting
timestamps into recognizable dates, showing you hexcodes as colors, display array data like a table for easy reading,
and much, much more.

Enabling Kint

By default, Kint is enabled in development and testing environments only. This can be altered by modifying
the $useKint value in the environment configuration section of the main index.php file:

$useKint = true;

Using Kint

d()

The d() method dumps all of the data it knows about the contents passed as the only parameter to the screen, and
allows the script to continue executing:

d($_SERVER);

ddd()

This method is identical to d(), except that it also dies() and no further code is executed this request.

trace()

This provides a backtrace to the current execution point, with Kint’s own unique spin:

Kint::trace();

For more information, see Kint’s page [https://raveren.github.io/kint/].

The Debug Toolbar

The Debug Toolbar provides at-a-glance information about the current page request, including benchmark results,
queries you have ran, request and response data, and more. This can all prove very useful during development
to help you debug and optimize.

Note

The Debug Toolbar is still under construction with several planned features not yet implemented.

Enabling the Toolbar

The toolbar is enabled by default in any environment _except_ production. It will be shown whenever the
constant CI_DEBUG is defined and it’s value is positive. This is defined in the boot files (i.e.
application/Config/Boot/development.php) and can be modified there to determine what environments it shows
itself in.

The toolbar itself is displayed as an After Filter. You can stop it from ever
running by removing it from the $globals property of application/Config/Filters.php.

Choosing What to Show

FSO ships with several Collectors that, as the name implies, collect data to display on the toolbar. You
can easily make your own to customize the toolbar. To determine which collectors are shown, again head over to
the App configuration file:

public $toolbarCollectors = [
 'FSO\Debug\Toolbar\Collectors\Timers',
 'FSO\Debug\Toolbar\Collectors\Database',
 'FSO\Debug\Toolbar\Collectors\Logs',
 'FSO\Debug\Toolbar\Collectors\Views',
 'FSO\Debug\Toolbar\Collectors\Cache',
 'FSO\Debug\Toolbar\Collectors\Files',
 'FSO\Debug\Toolbar\Collectors\Routes',
];

Comment out any collectors that you do not want to show. Add custom Collectors here by providing the fully-qualified
class name. The exact collectors that appear here will affect which tabs are shown, as well as what information is
shown on the Timeline.

The Collectors that ship with FSO are:

	Timers collects all of the benchmark data, both by the system and by your application.

	Database Displays a list of queries that all database connections have performed, and their execution time.

	Logs Any information that was logged will be displayed here. In long-running systems, or systems with many items being logged, this can cause memory issues and should be disabled.

	Views Displays render time for views on the timeline, and shows any data passed to the views on a separate tab.

	Cache Will display information about cache hits and misses, and execution times.

	Files displays a list of all files that have been loaded during this request.

	Routes displays information about the current route and all routes defined in the system.

Setting Benchmark Points

In order for the Profiler to compile and display your benchmark data you must name your mark points using specific syntax.

Please read the information on setting Benchmark points in the Benchmark Library page.

Creating Custom Collectors

Creating custom collectors is a straightforward task. You create a new class, fully-namespaced so that the autoloader
can locate it, that extends FSO\Debug\Toolbar\Collectors\BaseCollector. This provides a number of methods
that you can override, and has four required class properties that you must correctly set depending on how you want
the Collector to work

<?php namespace MyNamespace;

use FSO\Debug\Toolbar\Collectors\BaseCollector;

class MyCollector extends BaseCollector
{
 protected $hasTimeline = false;

 protected $hasTabContent = false;

 protected $hasVarData = false;

 protected $title = '';
}

$hasTimeline should be set to true for any Collector that wants to display information in the toolbar’s
timeline. If this is true, you will need to implement the formatTimelineData() method to format and return the
data for display.

$hasTabContent should be true if the Collector wants to display its own tab with custom content. If this
is true, you will need to provide a $title, implement the display() method to render out tab’s contents,
and might need to implement the getTitleDetails() method if you want to display additional information just
to the right of the tab content’s title.

$hasVarData should be true if this Collector wants to add additional data to the Vars tab. If this
is true, you will need to implement the getVarData() method.

$title is displayed on open tabs.

Displaying a Toolbar Tab

To display a toolbar tab you must:

	Fill in $title with the text displayed as both the toolbar title and the tab header.

	Set $hasTabContent to true.

	Implement the display() method.

	Optionally, implement the getTitleDetails() method.

The display() creates the HTML that is displayed within the tab itself. It does not need to worry about
the title of the tab, as that is automatically handled by the toolbar. It should return a string of HTML.

The getTitleDetails() method should return a string that is displayed just to the right of the tab’s title.
it can be used to provide additional overview information. For example, the Database tab displays the total
number of queries across all connections, while the Files tab displays the total number of files.

Providing Timeline Data

To provide information to be displayed in the Timeline you must:

	Set $hasTimeline to true.

	Implement the formatTimelineData() method.

The formatTimelineData() method must return an array of arrays formatted in a way that the timeline can use
it to sort it correctly and display the correct information. The inner arrays must include the following information:

$data[] = [
 'name' => '', // Name displayed on the left of the timeline
 'component' => '', // Name of the Component listed in the middle of timeline
 'start' => 0.00, // start time, like microtime(true)
 'duration' => 0.00 // duration, like mircrotime(true) - microtime(true)
];

Providing Vars

To add data to the Vars tab you must:

	Set $hasVarData to true

	Implement getVarData() method.

The getVarData() method should return an array containing arrays of key/value pairs to display. The name of the
outer array’s key is the name of the section on the Vars tab:

$data = [
 'section 1' => [
 'foo' => 'bar',
 'bar' => 'baz'
],
 'section 2' => [
 'foo' => 'bar',
 'bar' => 'baz'
]
];

Handling Multiple Environments

Developers often desire different system behavior depending on whether
an application is running in a development or production environment.
For example, verbose error output is something that would be useful
while developing an application, but it may also pose a security issue
when “live”. In development environments, you might want additional
tools loaded that you don’t in production environments, etc.

The ENVIRONMENT Constant

By default, FSO comes with the environment constant set to use
the value provided in $_SERVER['CI_ENVIRONMENT'], otherwise defaulting to
‘production’. This can be set in several ways depending on your server setup.

.env

The simplest method to set the variable is in your .env file:

CI_ENVIRONMENT = development

Apache

This server variable can be set in your .htaccess file, or Apache
config using SetEnv [https://httpd.apache.org/docs/2.2/mod/mod_env.html#setenv].

SetEnv CI_ENVIRONMENT development

nginx

Under nginx, you must pass the environment variable through the fastcgi_params
in order for it to show up under the $_SERVER variable. This allows it to work on the
virtual-host level, instead of using env to set it for the entire server, though that
would work fine on a dedicated server. You would then modify your server config to something
like:

server {
 server_name localhost;
 include conf/defaults.conf;
 root /var/www;

 location ~* "\.php$" {
 fastcgi_param CI_ENVIRONMENT "production";
 include conf/fastcgi-php.conf;
 }
}

Alternative methods are available for nginx and other servers, or you can
remove this logic entirely and set the constant based on the server’s IP address
(for instance).

In addition to affecting some basic framework behavior (see the next
section), you may use this constant in your own development to
differentiate between which environment you are running in.

Boot Files

FSO requires that a PHP script matching the environment’s name is located
under APPPATH/Config/Boot. These files can contain any customizations that
you would like to make for your environment, whether it’s updating the error display
settings, loading addtional developer tools, or anything else. These are
automatically loaded by the system. The following files are already created in
a fresh install:

	development.php

	production.php

	testing.php

Effects On Default Framework Behavior

There are some places in the FSO system where the ENVIRONMENT
constant is used. This section describes how default framework behavior
is affected.

Error Reporting

Setting the ENVIRONMENT constant to a value of ‘development’ will cause
all PHP errors to be rendered to the browser when they occur.
Conversely, setting the constant to ‘production’ will disable all error
output. Disabling error reporting in production is a
good security practice.

Configuration Files

Optionally, you can have FSO load environment-specific
configuration files. This may be useful for managing things like
differing API keys across multiple environments. This is described in
more detail in the Handling Different Environments section of the
Working with Configuration Files documentation.

错误处理

FSO 通过 SPL collection [http://php.net/manual/en/spl.exceptions.php] 和一些框架内自定义异常来生成系统错误报告。错误处理的行为取决于你部署环境的设置，当一个错误或异常被抛出时，只要应用不是在 production 环境下运行，就会默认展示出详细的错误报告。在这种情况下，应为用户显示一个更为通用的信息来保证最佳的用户体验。

使用异常处理

本节为新手程序员或没有多少异常处理使用经验的开发人员做一个简单概述。

异常处理是在异常被”抛出”的时候产生的事件。它会暂停当前脚本的执行，并将捕获到的异常发送到错误处理程序后显示适当的错误提示页:

throw new \Exception("Some message goes here");

如果你调用了一个可能会产生异常的方法，你可以使用 try/catch block 去捕获异常:

try {
 $user = $userModel->find($id);
}
catch (\Exception $e)
{
 die($e->getMessage());
}

如果 $userModel 抛出了一个异常，那么它就会被捕获，并执行 catch 代码块内的语句。在这个样例中，脚本终止并输出了 UserModel 定义的错误信息。

在这个例子中，我们可以捕捉任意类型的异常。如果我们仅仅想要监视特定类型的异常，比如 UnknownFileException，我们就可以把它在 catch 参数中指定出来。这样一来，其它异常和非监视类型子类的异常都会被传递给错误处理程序:

catch (\FSO\UnknownFileException $e)
{
 // do something here...
}

这便于你自己进行错误处理或是在脚本结束前做好清理工作。如果你希望错误处理程序正常运行，可以在 catch 语句块中再抛出一个新的异常。

catch (FSOUnknownFileException $e)
{

// do something here…

throw new RuntimeException($e->getMessage(), $e->getCode(), $e);

}

配置

默认情况下，FSO 将在 development 和 testing 环境中展示所有的错误，而在 production 环境中不展示任何错误。你可以在主 index.php 文件的顶部找到环境配置部分来更改此设置。

Important

如果发生错误，禁用错误报告将不会阻止日志的写入。

自定义异常

下列是可用的自定义异常:

PageNotFoundException

这是用来声明 404 ，页面无法找到的错误。当异常被抛出时，系统将显示后面的错误模板 /application/views/errors/html/error_404.php。你应为你的站点自定义所有错误视图。如果在 Config/Routes.php 中，你指定了404 的重写规则，那么它将代替标准的 404 页来被调用:

if (! $page = $pageModel->find($id))
{
 throw new \FSO\PageNotFoundException();
}

你可以通过异常传递消息，它将在 404 页默认消息位置被展示。

ConfigException

当配置文件中的值无效或 class 类不是正确类型等情况时，请使用此异常:

throw new \FSO\ConfigException();

它将 HTTP 状态码置为 500，退出状态码被置为 3.

UnknownFileException

在文件没有被找到时，请使用此异常:

throw new \FSO\UnknownFileException();

它将 HTTP 状态码置为 500，退出状态码被置为 4.

UnknownClassException

当一个类没有被找到时，请使用此异常:

throw new \FSO\UnknownClassException($className);

它将 HTTP 状态码置为 500，退出状态码被置为 5.

UnknownMethodException

当一个类的方法不存在时，请使用此异常:

throw new \FSO\UnknownMethodException();

它将 HTTP 状态码置为 500，退出状态码被置为 6.

UserInputException

当用户的输入无效时，请使用此异常:

throw new \FSO\UserInputException();

它将 HTTP 状态码置为 500，退出状态码被置为 7.

DatabaseException

当产生如连接不能建立或连接临时丢失的数据库错误时，请使用此异常:

throw new \FSO\DatabaseException();

它将 HTTP 状态码置为 500，退出状态码被置为 8.

Events - Extending the Framework Core

FSO’s Events feature provides a means to tap into and modify the inner workings of the framework without hacking
core files. When FSO runs it follows a specific execution process. There may be instances, however, when you’d
like to cause some action to take place at a particular stage in the execution process. For example, you might want to run
a script right before your controllers get loaded, or right after, or you might want to trigger one of your own scripts
in some other location.

Events work on a publish/subscribe pattern, where an event, is triggered at some point during the script execution.
Other scripts can “subscribe” to that event by registering with the Events class to let it know they want to perform an
action when that event is triggered.

Enabling Events

Events are always enabled, and are available globally.

Defining an Event

Most events are defined within the application/Config/Events.php file. You can subscribe an action to an event with
the Events class’ on() method. The first parameter is the name of the event to subscribe to. The second parameter is
a callable that will be run when that event is triggered:

use FSO\Events\Events;

Events::on('pre_system', ['MyClass', 'MyFunction']);

In this example, whenever the pre_controller event is executed, an instance of MyClass is created and the
MyFunction method is ran. Note that the second parameter can be any form of
callable [http://php.net/manual/en/function.is-callable.php] that PHP recognizes:

// Call a standalone function
Events::on('pre_system', 'some_function');

// Call on an instance method
$user = new User();
Events::on('pre_system', [$user, 'some_method']);

// Call on a static method
Events::on('pre_system', 'SomeClass::someMethod');

// Use a Closure
Events::on('pre_system', function(...$params)
{
 . . .
});

Setting Priorities

Since multiple methods can be subscribed to a single event, you will need a way to define in what order those methods
are called. You can do this by passing a priority value as the third parameter of the on() method. Lower values
are executed first, with a value of 1 having the highest priority, and there being no limit on the lower values:

Events::on('post_controller_constructor', 'some_function', 25);

Any subscribers with the same priority will be executed in the order they were defined.

Three constants are defined for your use, that set some helpful ranges on the values. You are not required to use these
but you might find they aid readability:

define('EVENT_PRIORITY_LOW', 200);
define('EVENT_PRIORITY_NORMAL', 100);
define('EVENT_PRIORITY_HIGH', 10);

Once sorted, all subscribers are executed in order. If any subscriber returns a boolean false value, then execution of
the subscribers will stop.

Publishing your own Events

The Events library makes it simple for you to create events in your own code, also. To use this feature, you would simply
need to call the trigger() method on the Events class with the name of the event:

\FSO\Events\Events::trigger('some_event');

You can pass any number of arguments to the subscribers by adding them as additional parameters. Subscribers will be
given the arguments in the same order as defined:

\FSO\Events\Events::trigger('some_events', $foo, $bar, $baz);

Events::on('some_event', function($foo, $bar, $baz) {
 ...
});

Event Points

The following is a list of available event points within the FSO core code:

	pre_system Called very early during system execution. Only the benchmark and events class have been loaded at this point. No routing or other processes have happened.

	post_controller_constructor Called immediately after your controller is instantiated, but prior to any method calls happening.

	post_system Called after the final rendered page is sent to the browser, at the end of system execution after the finalized data is sent to the browser.

Controller Filters

Controller Filters allow you to perform actions either before or after the controllers execute. Unlike events,
you can very simply choose which URI’s in your application have the filters applied to them. Incoming filters may
modify the Request, while after filters can act on and even modify the Response, allowing for a lot of flexibility
and power. Some common examples of tasks that might be performed with filters are:

	Performing CSRF protection on the incoming requests

	Restricting areas of your site based upon their Role

	Perform rate limiting on certain endpoints

	Display a “Down for Maintenance” page

	Perform automatic content negotiation

	and more..

Creating a Filter

Filters are simple classes that implement FSO\Filters\FilterInterface. They contain two methods: before()
and after(), which contain the code that will be ran before and after the controller, respectively. Your class
must contain both methods, but may leave the methods empty if they are not needed. A skeleton filter class looks like:

<?php namespace App\Filters;

use FSO\HTTP\RequestInterface;
use FSO\HTTP\ResponseInterface;
use FSO\Filters\FilterInterface;

class MyFilter implements FilterInterface
{
 public function before(RequestInterface $request)
 {
 // Do something here
 }

 //--

 public function after(RequestInterface $request, ResponseInterface $response)
 {
 // Do something here
 }
}

Before Filters

From any filter, you can return the $request object and it will replace the current Request, allowing you
to make changes that will still be present when the controller executes.

Since before filters are executed prior to your controller being executed, you may at times want to stop the
actions in the controller from happening. You can do this by passing back anything that is not the request object.
This is typically used to peform redirects, like in this example:

public function before(RequestInterface $request)
{
 $auth = service('auth');

 if (! $auth->isLoggedIn())
 {
 return redirect('login');
 }
}

If a Response instance is returned, the Response will be sent back to the client and script execution will stop.
This can be useful for implementing rate limiting for API’s. See application/Filters/Throttle.php for an
example.

After Filters

After filters are nearly identical to before filters, except that you can only return the $response object,
and you cannot stop script execution. This does allow you to modify the final output, or simply do something with
the final output. This could be used to ensure certain security headers were set the correct way, or to cache
the final output, or even to filter the final output with a bad words filter.

Configuring Filters

Once you’ve created your filters, you need to configure when they get run. This is done in application/Config/Filters.php.
This file contains four properties that allow you to configure exactly when the filters run.

$aliases

The $aliases array is used to associate a simple name with one or more fully-qualified class names that are the
filters to run:

public $aliases = [
 'csrf' => \App\Filters\CSRF::class
];

Aliases are mandatory and if you try to use a full class name later, the system will throw an error. Defining them
in this way makes it simple to switch out the class used. Great for when you decided you need to change to a
different authentication system since you only change the filter’s class and you’re done.

You can combine multiple filters into one alias, making complex sets of filters simple to apply:

public $aliases = [
 'apiPrep' => [
 \App\Filters\Negotiate::class,
 \App\Filters\ApiAuth::class
]
];

You should define as many aliases as you need.

$globals

The second section allows you to define any filters that should be applied to every request made by the framework.
You should take care with how many you use here, since it could have performance implications to have too many
run on every request. Filters can be specified by adding their alias to either the before or after array:

public $globals = [
 'before' => [
 'csrf'
],
 'after' => []
];

There are times where you want to apply a filter to almost every request, but have a few that should be left alone.
One common example is if you need to exclude a few URI’s from the CSRF protection filter to allow requests from
third-party websites to hit one or two specific URI’s, while keeping the rest of them protected. To do this, add
an array with the ‘except’ key and a uri to match as the value alongside the alias:

public $globals = [
 'before' => [
 'csrf' => ['except' => 'api/*']
],
 'after' => []
];

Any place you can use a URI in the filter settings, you can use a regular expression or, like in this example, use
an asterisk for a wildcard that will match all characters after that. In this example, any URL’s starting with api/
would be exempted from CSRF protection, but the site’s forms would all be protected. If you need to specify multiple
URI’s you can use an array of URI patterns:

public $globals = [
 'before' => [
 'csrf' => ['except' => ['foo/*', 'bar/*']]
],
 'after' => []
];

$methods

You can apply filters to all requests of a certain HTTP method, like POST, GET, PUT, etc. In this array, you would
specify the method name in lowercase. It’s value would be an array of filters to run. Unlike the $globals or the
$filters properties, these will only run as before filters:

public $methods = [
 'post' => ['foo', 'bar'],
 'get' => ['baz']
]

In addition to the standard HTTP methods, this also supports two special cases: ‘cli’, and ‘ajax’. The names are
self-explanatory here, but ‘cli’ would apply to all requests that were run from the command line, while ‘ajax’
would apply to every AJAX request.

$filters

This property is an array of filter aliases. For each alias you can specify before and after arrays that contain
a list of URI patterns that filter should apply to:

public filters = [
 'foo' => ['before' => ['admin/*'], 'after' => ['users/*']],
 'bar' => ['before' => ['api/*', 'admin/*']]
];

Provided Filters

To be determined.

Helper Functions

Helpers, as the name suggests, help you with tasks. Each helper file is
simply a collection of functions in a particular category. There are URL
Helpers, that assist in creating links, there are Form Helpers that help
you create form elements, Text Helpers perform various text formatting
routines, Cookie Helpers set and read cookies, File Helpers help you
deal with files, etc.

Unlike most other systems in FSO, Helpers are not written in an
Object Oriented format. They are simple, procedural functions. Each
helper function performs one specific task, with no dependence on other
functions.

FSO does not load Helper Files by default, so the first step in
using a Helper is to load it. Once loaded, it becomes globally available
in your controller and
views.

Helpers are typically stored in your system/Helpers, or
application/Helpers directory. FSO will look first in your
application/Helpers directory. If the directory does not exist or the
specified helper is not located there CI will instead look in your
global system/Helpers/ directory.

Loading a Helper

Loading a helper file is quite simple using the following method:

helper('name');

Where name is the file name of the helper, without the .php file
extension or the “helper” part.

For example, to load the URL Helper file, which is named
url_helper.php, you would do this:

helper('url');

A helper can be loaded anywhere within your controller methods (or
even within your View files, although that’s not a good practice), as
long as you load it before you use it. You can load your helpers in your
controller constructor so that they become available automatically in
any function, or you can load a helper in a specific function that needs
it.

Note

The Helper loading method above does not return a value, so
don’t try to assign it to a variable. Just use it as shown.

Loading from Non-standard Locations

Helpers can be loaded from directories outside of application/Helpers and
system/Helpers, as long as that path can be found through a namespace that
has been setup within the PSR-4 section of the Autoloader config file.
You would prefix the name of the Helper with the namespace that it can be located
in. Within that namespaced directory, the loader expects it to live within a
sub-directory named Helpers. An example will help understand this.

For this example, assume that we have grouped together all of our Blog-related
code into its own namespace, Example\Blog. The files exist on our server at
/Modules/Blog/. So, we would put our Helper files for the blog module in
/Modules/Blog/Helpers/. A blog_helper file would be at
/Modules/Blog/Helpers/blog_helper.php. Within our controller we could
use the following command to load the helper for us:

helper('Modules\Blog\blog');

Note

The functions within files loaded this way are not truly namespaced.
The namespace is simply used as a convenient way to locate the files.

Using a Helper

Once you’ve loaded the Helper File containing the function you intend to
use, you’ll call it the way you would a standard PHP function.

For example, to create a link using the anchor() function in one of
your view files you would do this:

<?php echo anchor('blog/comments', 'Click Here');?>

Where “Click Here” is the name of the link, and “blog/comments” is the
URI to the controller/method you wish to link to.

“Extending” Helpers

TODO: Determine how these can be extended… namespaces, etc?

To “extend” Helpers, create a file in your application/helpers/ folder
with an identical name to the existing Helper, but prefixed with MY_
(this item is configurable. See below.).

If all you need to do is add some functionality to an existing helper -
perhaps add a function or two, or change how a particular helper
function operates - then it’s overkill to replace the entire helper with
your version. In this case it’s better to simply “extend” the Helper.

Note

The term “extend” is used loosely since Helper functions are
procedural and discrete and cannot be extended in the traditional
programmatic sense. Under the hood, this gives you the ability to
add to or or to replace the functions a Helper provides.

For example, to extend the native Array Helper you’ll create a file
named application/helpers/MY_array_helper.php, and add or override
functions:

// any_in_array() is not in the Array Helper, so it defines a new function
function any_in_array($needle, $haystack)
{
 $needle = is_array($needle) ? $needle : array($needle);

 foreach ($needle as $item)
 {
 if (in_array($item, $haystack))
 {
 return TRUE;
 }
 }

 return FALSE;
}

// random_element() is included in Array Helper, so it overrides the native function
function random_element($array)
{
 shuffle($array);
 return array_pop($array);
}

Now What?

In the Table of Contents you’ll find a list of all the available Helper
Files. Browse each one to see what they do.

常规主题

	利用配置文件开始工作

	FSO URLs

	控制器

	Views

	View Cells

	View Renderer

	View Parser

	Helper Functions

	Creating Core System Classes

	Events - Extending the Framework Core

	Global Functions and Constants

	URI 路由

	Controller Filters

	Logging Information

	错误处理

	Debugging Your Application

	网页缓存

	Running via the CLI

	Custom CLI Commands

	Code Modules

	Managing your Applications

	Handling Multiple Environments

	在视图文件中使用PHP替代语法

	Testing

Logging Information

You can log information to the local log files by using the log_message() method. You must supply
the “level” of the error in the first parameter, indicating what type of message it is (debug, error, etc).
The second parameter is the message itself:

if ($some_var == '')
{
 log_message('error', 'Some variable did not contain a value.');
}

There are eight different log levels, matching to the RFC 5424 [http://tools.ietf.org/html/rfc5424] levels, and they are as follows:

	debug - Detailed debug information.

	info - Interesting events in your application, like a user logging in, logging SQL queries, etc.

	notice - Normal, but significant events in your application.

	warning - Exceptional occurrences that are not errors, like the user of deprecated APIs, poor use of an API, or other undesirable things that are not necessarily wrong.

	error - Runtime errors that do not require immediate action but should typically be logged and monitored.

	critical - Critical conditions, like an application component not available, or an unexpected exception.

	alert - Action must be taken immediately, like when an entire website is down, the database unavailable, etc.

	emergency - The system is unusable.

The logging system does not provide ways to alert sysadmins or webmasters about these events, they solely log
the information. For many of the more critical event levels, the logging happens automatically by the
Error Handler, described above.

Configuration

You can modify which levels are actually logged, as well as assign different Loggers to handle different levels, within
the /application/Config/Logger.php configuration file.

The threshold value of the config file determines which levels are logged across your application. If any levels
are requested to be logged by the application, but the threshold doesn’t allow them to log currently, they will be
ignored. The simplest method to use is to set this value to the minimum level that you want to have logged. For example,
if you want to log debug messages, and not information messages, you would set the threshold to 5. Any log requests with
a level of 5 or less (which includes runtime errors, system errors, etc) would be logged and info, notices, and warnings
would be ignored:

public $threshold = 5;

A complete list of levels and their corresponding threshold value is in the configuration file for your reference.

You can pick and choose the specific levels that you would like logged by assigning an array of log level numbers
to the threshold value:

// Log only debug and info type messages
public $threshold = [5, 8];

Using Multiple Log Handlers

The logging system can support multiple methods of handling logging running at the same time. Each handler can
be set to handle specific levels and ignore the rest. Currently, two handlers come with a default install:

	File Handler is the default handler and will create a single file for every day locally. This is the
recommended method of logging.

	ChromeLogger Handler If you have the ChromeLogger extension [https://craig.is/writing/chrome-logger]
installed in the Chrome web browser, you can use this handler to display the log information in
Chrome’s console window.

The handlers are configured in the main configuration file, in the $handlers property, which is simply
an array of handlers and their configuration. Each handler is specified with the key being the fully
name-spaced class name. The value will be an array of varying properties, specific to each handler.
Each handler’s section will have one property in common: handles, which is an array of log level
__names__ that the handler will log information for.

public $handlers = [

 //--
 // File Handler
 //--

 'FSO\Log\Handlers\FileHandler' => [

 'handles' => ['critical', 'alert', 'emergency', 'debug', 'error', 'info', 'notice', 'warning'],
]
];

Modifying the Message With Context

You will often want to modify the details of your message based on the context of the event being logged.
You might need to log a user id, an IP address, the current POST variables, etc. You can do this by use
placeholders in your message. Each placeholder must be wrapped in curly braces. In the third parameter,
you must provide an array of placeholder names (without the braces) and their values. These will be inserted
into the message string:

// Generates a message like: User 123 logged into the system from 127.0.0.1
$info = [
 'id' => $user->id,
 'ip_address' => $this->request->ip_address()
];

log_message('info', 'User {id} logged into the system from {ip_address}', $info);

If you want to log an Exception or an Error, you can use the key of ‘exception’, and the value being the
Exception or Error itself. A string will be generated from that object containing the error message, the
file name and line number. You must still provide the exception placeholder in the message:

try
{
 ... Something throws error here
}
catch (\Exception #e)
{
 log_message('error', '[ERROR] {exception}', ['exception' => $e]);
}

Several core placeholders exist that will be automatically expanded for you based on the current page request:

	Placeholder

	Inserted value

	{post_vars}

	$_POST variables

	{get_vars}

	$_GET variables

	{session_vars}

	$_SESSION variables

	{env}

	Current environment name, i.e. development

	{file}

	The name of file calling the logger

	{line}

	The line in {file} where the logger was called

	{env:foo}

	The value of ‘foo’ in $_ENV

Using Third-Party Loggers

You can use any other logger that you might like as long as it extends from either
Psr\Log\LoggerInterface and is PSR3 [http://www.php-fig.org/psr/psr-3/] compatible. This means
that you can easily drop in use for any PSR3-compatible logger, or create your own.

You must ensure that the third-party logger can be found by the system, by adding it to either
the /application/Config/Autoload.php configuration file, or through another autoloader,
like Composer. Next, you should modify /application/Config/Services.php to point the logger
alias to your new class name.

Now, any call that is done through the log_message() function will use your library instead.

LoggerAware Trait

If you would like to implement your libraries in a framework-agnostic method, you can use
the FSO\Log\LoggerAwareTrait which implements the setLogger() method for you.
Then, when you use your library under different environments for frameworks, your library should
still be able to log as it would expect, as long as it can find a PSR3 compatible logger.

Managing your Applications

By default it is assumed that you only intend to use FSO to
manage one application, which you will build in your application/
directory. It is possible, however, to have multiple sets of
applications that share a single FSO installation, or even to
rename or relocate your application directory.

Renaming the Application Directory

If you would like to rename your application directory you may do so
as long as you open your main index.php file and set its name using
the $application_directory variable:

$application_directory = 'application';

Relocating your Application Directory

It is possible to move your application directory to a different
location on your server than your web root. To do so open
your main index.php and set a full server path in the
$application_directory variable:

$application_directory = '/path/to/your/application';

Running Multiple Applications with one FSO Installation

If you would like to share a common FSO installation to manage
several different applications simply put all of the directories located
inside your application directory into their own sub-directory.

For example, let’s say you want to create two applications, named “foo”
and “bar”. You could structure your application directories like this:

applications/foo/
applications/foo/config/
applications/foo/controllers/
applications/foo/libraries/
applications/foo/models/
applications/foo/views/
applications/bar/
applications/bar/config/
applications/bar/controllers/
applications/bar/libraries/
applications/bar/models/
applications/bar/views/

To select a particular application for use requires that you open your
main index.php file and set the $application_directory variable. For
example, to select the “foo” application for use you would do this:

$application_directory = 'applications/foo';

Note

Each of your applications will need its own index.php file
which calls the desired application. The index.php file can be named
anything you want.

Code Modules

FSO supports a very simple form of modularization to help you create reusable code. Modules are typically
centered around a specific subject, and can be thought of as mini-applications within your larger application. Any
of the standard file types within the framework are supported, like controllers, models, views, config files, helpers,
language files, etc. Modules may contain as few, or as many, of these as you like.

Page Contents

	Code Modules

	Namespaces

	Working With Files

	Routes

	Controllers

	Config Files

	Migrations

	Seeds

	Helpers

	Language Files

	Libraries

	Models

	Views

Namespaces

The core element of the modules functionality comes from the PSR4-compatible autoloading
that FSO uses. While any code can use the PSR4 autoloader and namespaces, the only way to take full advantage of
modules is to namespace your code and add it to application/Config/Autoload.php, in the psr4 section.

For example, let’s say we want to keep a simple blog module that we can re-use between components. We might create
folder with our company name, Acme, to store all of our modules within. We will put it right alongside our application
directory in the main project root:

/acme // New modules directory
/application
/public
/system
/tests
/writable

Open /applicationConfigAutoload.php and add the Acme namespace to the psr4 array property:

public $psr4 = [
 'Acme' => ROOTPATH.'acme'
];

Now that this is setup we can access any file within the acme folder through the Acme namespace. This alone
takes care of 80% of what is needed for modules to work, so you should be sure to familiarize yourself within namespaces
and become comfortable with their use. A number of the file types will be scanned for automatically through all defined
namespaces here, making this crucial to working with modules at all.

A common directory structure within a module will mimic the main application folder:

/acme
 /Blog
 /Config
 /Controllers
 /Database
 /Migrations
 /Seeds
 /Helpers
 /Language
 /en
 /Libraries
 /Models
 /Views

Of course, there is nothing forcing you to use this exact structure, and you should organize it in the manner that
best suits your module, leaving out directories you don’t need, creating new directories for Entities, Interfaces,
or Repositories, etc.

Working With Files

This section will take a look at each of the file types (controllers, views, language files, etc) and how they can
be used within the module. Some of this information is described in more detail in the relevant location of the user
guide, but is being reproduced here so that it’s easier to grasp how all of the pieces fit together.

Routes

By default, routes are not automatically scanned for within modules. This is to boost
performance when modules are not in use. However, it’s a simple thing to scan for any Routes file within modules.
Simply change the discoverLocal setting to true in /application/Config/Routes.php:

$routes->discoverLocal(true);

This will scan all PSR4 namespaced directories specified in /application/Config/Autoload.php. It will look for
{namespace}/Config/Routes.php files and load them if they exist. This way, each module can contain its own
Routes file that is kept with it whenever you add it to new projects. For our blog example, it would look for
/acme/Blog/Config/Routes.php.

Note

Since the files are being included into the current scope, the $routes instance is already defined for you.
It will cause errors if you attempt to redefine that class.

Controllers

Controllers cannot be automatically routed by URI detection, but must be specified within the Routes file itself:

// Routes.php
$routes->get('blog', 'Acme\Blog\Controllers\Blog::index');

To reduce the amount of typing needed here, the group routing feature is helpful:

$routes->group('blog', ['namespace' => 'Acme\Blog\Controllers'], function($routes)
{
 $routes->get('/', 'Blog::index');
});

Config Files

No special change is needed when working with configuration files. These are still namespaced classes and loaded
with the new command:

$config = new \Acme\Blog\Config\Blog();

Migrations

Migration files will be automatically discovered within defined namespaces. All migrations found across all
namespaces will be ran every time.

Seeds

Seeds files can be used from both the CLI and called from within other seed files as long as the full namespace
is provided. If calling on the CLI, you will need to provide double backslashes:

> php public/index.php migrations seed Acme\\Blog\\Database\\Seeds\\TestPostSeeder

Helpers

Helpers will be located automatically from defined namespaces when using the helper() method, as long as it
is within the namespaces Helpers directory:

helper('blog');

Language Files

Language files are located automatically from defined namespaces when using the lang() method, as long as the
file follows the same directory structures as the main application directory.

Libraries

Libraries are always instantiated by their fully-qualified class name, so no special access is provided:

$lib = new \Acme\Blog\Libraries\BlogLib();

Models

Models are always instantiated by their fully-qualified class name, so no special access is provided:

$model = new \Acme\Blog\Models\PostModel();

Views

Views can be loaded using the class namespace as described in the views documentation:

echo view('Acme\Blog\Views\index');

URI 路由

本页内容

	URI 路由

	设置你自己的路由规则

	Placeholders

	Examples

	Custom Placeholders

	Regular Expressions

	Closures

	Mapping multiple routes

	Redirecting Routes

	Grouping Routes

	Environment Restrictions

	Reverse Routing

	Using Named Routes

	Using HTTP verbs in routes

	Command-Line only Routes

	Resource Routes

	Change the Controller Used

	Change the Placeholder Used

	Limit the Routes Made

	Global Options

	Assigning Namespace

	Limit to Hostname

	Limit to Subdomains

	Offsetting the Matched Parameters

	Routes Configuration Options

	Default Namespace

	Default Controller

	Default Method

	Translate URI Dashes

	Use Defined Routes Only

	404 Override

	Discovering Module Routes

一般情况下，一个 URL 字符串和它对应的控制器中类和方法是一一对应的关系。 URL 中的每一段通常遵循下面的规则:

example.com/class/function/id/

但是有时候，你可能想改变这种映射关系，调用一个不同的类和方法，而不是 URL 中对应的那样。

例如，假设你希望你的 URL 变成下面这样:

example.com/product/1/
example.com/product/2/
example.com/product/3/
example.com/product/4/

URL 的第二段通常表示方法的名称，但在上面的例子中，第二段是一个商品 ID ， 为了实现这一点，FSO 允许你重新定义 URL 的处理流程。

设置你自己的路由规则

Routing rules are defined in the application/config/Routes.php file. In it you’ll see that
it creates an instance of the RouteCollection class that permits you to specify your own routing criteria.
Routes can be specified using placeholders or Regular Expressions.

A route simply takes the URI on the left, and maps it to the controller and method on the right,
along with any parameters that should be passed to the controller. The controller and method should
be listed in the same way that you would use a static method, by separating the fully-namespaced class
and its method with a double-colon, like Users::list. If that method requires parameters to be
passed to it, then they would be listed after the method name, separated by forward-slashes:

// Calls the $Users->list()
Users::list
// Calls $Users->list(1, 23)
Users::list/1/23

Placeholders

A typical route might look something like this:

$routes->add('product/:num', 'App\Catalog::productLookup');

In a route, the first parameter contains the URI to be matched, while the second parameter
contains the destination it should be re-routed to. In the above example, if the literal word
“product” is found in the first segment of the URL, and a number is found in the second segment,
the “AppCatalog” class and the “productLookup” method are used instead.

Placeholders are simply strings that represent a Regular Expression pattern. During the routing
process, these placeholders are replaced with the value of the Regular Expression. They are primarily
used for readability.

The following placeholders are available for you to use in your routes:

	(:any) will match all characters from that point to the end of the URI. This may include multiple URI segments.

	(:segment) will match any character except for a forward slash (/) restricting the result to a single segment.

	(:num) will match any integer.

	(:alpha) will match any string of alphabetic characters

	(:alphanum) will match any string of alphabetic characters or integers, or any combination of the two.

	(:hash) is the same as :segment, but can be used to easily see which routes use hashed ids (see the Model docs).

Note

{locale} cannot be used as a placeholder or other part of the route, as it is reserved for use
in localization.

Examples

Here are a few basic routing examples:

$routes->add('journals', 'App\Blogs');

A URL containing the word “journals” in the first segment will be remapped to the “AppBlogs” class,
and the default method, which is usually index():

$routes->add('blog/joe', 'Blogs::users/34');

A URL containing the segments “blog/joe” will be remapped to the “Blogs” class and the “users” method.
The ID will be set to “34”:

$routes->add('product/(:any)', 'Catalog::productLookup');

A URL with “product” as the first segment, and anything in the second will be remapped to the “Catalog” class
and the “productLookup” method:

$routes->add('product/(:num)', 'Catalog::productLookupByID/$1';

A URL with “product” as the first segment, and a number in the second will be remapped to the “Catalog” class
and the “productLookupByID” method passing in the match as a variable to the method.

Important

While the add() method is convenient, it is recommended to always use the HTTP-verb-based
routes, described below, as it is more secure. It will also provide a slight performance increase, since
only routes that match the current request method are stored, resulting in less routes to scan through
when trying to find a match.

Custom Placeholders

You can create your own placeholders that can be used in your routes file to fully customize the experience
and readability.

You add new placeholders with the addPlaceholder method. The first parameter is the string to be used as
the placeholder. The second parameter is the Regular Expression pattern it should be replaced with.
This must be called before you add the route:

$routes->addPlaceholder('uuid', '[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}');
$routes->add('users/(:uuid)', 'Users::show/$1');

Regular Expressions

If you prefer you can use regular expressions to define your routing rules. Any valid regular expression
is allowed, as are back-references.

In the above example, a URI similar to products/shirts/123 would instead call the “Shirts” controller class
and the “id_123” method.

With regular expressions, you can also catch a segment containing a forward slash (‘/’), which would usually
represent the delimiter between multiple segments.

For example, if a user accesses a password protected area of your web application and you wish to be able to
redirect them back to the same page after they log in, you may find this example useful:

$routes->add('login/(.+)', 'Auth::login/$1');

For those of you who don’t know regular expressions and want to learn more about them,
regular-expressions.info [http://www.regular-expressions.info/] might be a good starting point.

Important

Note: You can also mix and match wildcards with regular expressions.

Closures

You can use an anonymous function, or Closure, as the destination that a route maps to. This function will be
executed when the user visits that URI. This is handy for quickly executing small tasks, or even just showing
a simple view:

$routes->add('feed', function()
 {
 $rss = new RSSFeeder();
 return $rss->feed('general');
 {
);

Mapping multiple routes

While the add() method is simple to use, it is often handier to work with multiple routes at once, using
the map() method. Instead of calling the add() method for each route that you need to add, you can
define an array of routes and then pass it as the first parameter to the map() method:

$routes = [];
$routes['product/(:num)'] = 'Catalog::productLookupById';
$routes['product/(:alphanum)'] = 'Catalog::productLookupByName';

$collection->map($routes);

Redirecting Routes

Any site that lives long enough is bound to have pages that move. You can specify routes that should redirect
to other routes with the addRedirect() method. The first parameter is the URI pattern for the old route. The
second parameter is either the new URI to redirect to, or the name of a named route. The third parameter is
the HTTP status code that should be sent along with the redirect. The default value is 302 which is a temporary
redirect and is recommended in most cases:

$routes->add('users/profile', 'Users::profile', ['as' => 'profile']);

// Redirect to a named route
$routes->addRedirect('users/about', 'profile');
// Redirect to a URI
$routes->addRedirect('users/about', 'users/profile');

If a redirect route is matched during a page load, the user will be immediately redirected to the new page before a
controller can be loaded.

Grouping Routes

You can group your routes under a common name with the group() method. The group name becomes a segment that
appears prior to the routes defined inside of the group. This allows you to reduce the typing needed to build out an
extensive set of routes that all share the opening string, like when building an admin area:

$routes->group('admin', function($routes)
{
 $routes->add('users', 'Admin\Users::index');
 $routes->add('blog', 'Admin\Blog::index');
});

This would prefix the ‘users’ and ‘blog” URIs with “admin”, handling URLs like /admin/users and /admin/blog.
It is possible to nest groups within groups for finer organization if you need it:

$routes->group('admin', function($routes)
{
 $routes->group('users', function($routes)
 {
 $routes->add('list', 'Admin\Users::list');
 });

});

This would handle the URL at admin/users/list.

Environment Restrictions

You can create a set of routes that will only be viewable under a certain environment. This allows you to create
tools that only the developer can use on their local machines that are not reachable on testing or production servers.
This can be done with the environment() method. The first parameter is the name of the environment. Any
routes defined within this closure are only accessible from the given environment:

$routes->environment('development', function($routes)
{
 $routes->add('builder', 'Tools\Builder::index');
});

Reverse Routing

Reverse routing allows you to define the controller and method, as well as any parameters, that a link should go
to, and have the router lookup the current route to it. This allows route definitions to change without you having
to update your application code. This is typically used within views to create links.

For example, if you have a route to a photo gallery that you want to link to, you can use the route_to() helper
function to get the current route that should be used. The first parameter is the fully qualified Controller and method,
separated by a double colon (::), much like you would use when writing the initial route itself. Any parameters that
should be passed to the route are passed in next:

// The route is defined as:
$routes->add('users/(:id)/gallery(:any)', 'App\Controllers\Galleries::showUserGallery/$1/$2');

// Generate the relative URL to link to user ID 15, gallery 12
// Generates: /users/15/gallery/12
<a href="<?= route_to('App\Controllers\Galleries::showUserGallery', 15, 12) ?>">View Gallery

Using Named Routes

You can name routes to make your application less fragile. This applies a name to a route that can be called
later, and even if the route definition changes, all of the links in your application built with route_to
will still work without you having to make any changes. A route is named by passing in the as option
with the name of the route:

// The route is defined as:
$routes->add('users/(:id)/gallery(:any)', 'Galleries::showUserGallery/$1/$2', ['as' => 'user_gallery');

 // Generate the relative URL to link to user ID 15, gallery 12
 // Generates: /users/15/gallery/12
 <a href="<?= route_to('user_gallery', 15, 12) ?>">View Gallery

This has the added benefit of making the views more readable, too.

Using HTTP verbs in routes

It is possible to use HTTP verbs (request method) to define your routing rules. This is particularly
useful when building RESTFUL applications. You can use any standard HTTP verb (GET, POST, PUT, DELETE, etc).
Each verb has its own method you can use:

$routes->get('products', 'Product::feature');
$routes->post('products', 'Product::feature');
$routes->put('products/(:num)', 'Product::feature');
$routes->delete('products/(:num)', 'Product::feature');

You can supply multiple verbs that a route should match by passing them in as an array to the match method:

$routes->match(['get', 'put'], 'products', 'Product::feature');

Command-Line only Routes

You can create routes that work only from the command-line, and are inaccessible from the web browser, with the
cli() method. This is great for building cronjobs or CLI-only tools. Any route created by any of the HTTP-verb-based
route methods will also be inaccessible from the CLI, but routes created by the any() method will still be
available from the command line:

$routes->cli('migrate', 'App\Database::migrate');

Resource Routes

You can quickly create a handful of RESTful routes for a single resource with the resource() method. This
creates the five most common routes needed for full CRUD of a resource: create a new resource, update an existing one,
list all of that resource, show a single resource, and delete a single resource. The first parameter is the resource
name:

 $routes->resource('photos');

 // Equivalent to the following:
 $routes->get('photos', 'Photos::index');
 $routes->get('photos/new', 'Photos::new');
 $routes->get('photos/(:segment)/edit', 'Photos::edit/$1');
 $routes->get('photos/(:segment)', 'Photos::show/$1');
 $routes->post('photos', 'Photos::create');
$routes->patch('photos/(:segment)', 'Photos::update/$1');
 $routes->put('photos/(:segment)', 'Photos::update/$1');
 $routes->delete('photos/(:segment)', 'Photos::delete/$1');

Important

The routes are matched in the order they are specified, so if you have a resource photos above a get ‘photos/poll’

the show action’s route for the resource line will be matched before the get line. To fix this, move the get line above the resource
line so that it is matched first.

The second parameter accepts an array of options that can be used to modify the routes that are generated. While these
routes are geared toward API-usage, where more methods are allowed, you can pass in the ‘websafe’ option to have it
generate update and delete methods that work with HTML forms:

$routes->resource('photos', ['websafe' => 1]);

// The following equivalent routes are created:
$routes->post('photos/(:segment)', 'Photos::update/$1');
$routes->post('photos/(:segment)/delete', 'Photos::delete/$1');

Change the Controller Used

You can specify the controller that should be used by passing in the controller option with the name of
the controller that should be used:

$routes->resources('photos', ['controller' =>'App\Gallery']);

// Would create routes like:
$routes->get('photos', 'App\Gallery::index');

Change the Placeholder Used

By default, the segment placeholder is used when a resource ID is needed. You can change this by passing
in the placeholder option with the new string to use:

$routes->resources('photos', ['placeholder' => '(:id)']);

// Generates routes like:
$routes->get('photos/(:id)', 'Photos::show/$1');

Limit the Routes Made

You can restrict the routes generated with the only option. This should be an array of method names that should
be created. Only routes that match one of these methods will be created. The rest will be ignored:

$routes->resources('photos', ['only' => ['index', 'show']]);

Valid methods are: index, show, create, update, new, edit and delete.

Global Options

All of the methods for creating a route (add, get, post, resources, etc) can take an array of options that
can modify the generated routes, or further restrict them. The $options array is always the last parameter:

$routes->add('from', 'to', $options);
$routes->get('from', 'to', $options);
$routes->post('from', 'to', $options);
$routes->put('from', 'to', $options);
$routes->head('from', 'to', $options);
$routes->options('from', 'to', $options);
$routes->delete('from', 'to', $options);
$routes->patch('from', 'to', $options);
$routes->match(['get', 'put'], 'from', 'to', $options);
$routes->resources('photos', $options);
$routes->map($array, $options);
$routes->group('name', $options, function());

Assigning Namespace

While a default namespace will be prepended to the generated controllers (see below), you can also specify
a different namespace to be used in any options array, with the namespace option. The value should be the
namespace you want modified:

// Routes to \Admin\Users::index()
$routes->add('admin/users', 'Users::index', ['namespace' => 'Admin']);

The new namespace is only applied during that call for any methods that create a single route, like get, post, etc.
For any methods that create multiple routes, the new namespace is attached to all routes generated by that function
or, in the case of group(), all routes generated while in the closure.

Limit to Hostname

You can restrict groups of routes to function only in certain domain or sub-domains of your application
by passing the “hostname” option along with the desired domain to allow it on as part of the options array:

$collection->get('from', 'to', ['hostname' => 'accounts.example.com']);

This example would only allow the specified hosts to work if the domain exactly matched “accounts.example.com”.
It would not work under the main site at “example.com”.

Limit to Subdomains

When the subdomain option is present, the system will restrict the routes to only be available on that
sub-domain. The route will only be matched if the subdomain is the one the application is being viewed through:

// Limit to media.example.com
$routes->add('from', 'to', ['subdomain' => 'media']);

You can restrict it to any subdomain by setting the value to an asterisk, (*). If you are viewing from a URL
that does not have any subdomain present, this will not be matched:

// Limit to any sub-domain
$routes->add('from', 'to', ['subdomain' => '*']);

Important

The system is not perfect and should be tested for your specific domain before being used in production.
Most domains should work fine but some edge case ones, especially with a period in the domain itself (not used
to separate suffixes or www) can potentially lead to false positives.

Offsetting the Matched Parameters

You can offset the matched parameters in your route by any numeric value with the offset option, with the
value being the number of segments to offset.

This can be beneficial when developing API’s with the first URI segment being the version number. It can also
be used when the first parameter is a language string:

$routes->get('users/(:num)', 'users/show/$1', ['offset' => 1]);

// Creates:
$routes['users/(:num)'] = 'users/show/$2';

Routes Configuration Options

The RoutesCollection class provides several options that affect all routes, and can be modified to meet your
application’s needs. These options are available at the top of /application/Config/Routes.php.

Default Namespace

When matching a controller to a route, the router will add the default namespace value to the front of the controller
specified by the route. By default, this value is empty, which leaves each route to specify the fully namespaced
controller:

$routes->setDefaultNamespace('');

// Controller is \Users
 $routes->add('users', 'Users::index');

 // Controller is \Admin\Users
 $routes->add('users', 'Admin\Users::index');

If your controllers are not explicitly namespaced, there is no need to change this. If you namespace your controllers,
then you can change this value to save typing:

$routes->setDefaultNamespace('App');

// Controller is \App\Users
$routes->add('users', 'Users::index');

// Controller is \App\Admin\Users
$routes->add('users', 'Admin\Users::index');

Default Controller

When a user visits the root of your site (i.e. example.com) the controller to use is determined by the value set by
the setDefaultController() method, unless a route exists for it explicitly. The default value for this is Home
which matches the controller at /application/Controllers/Home.php:

// example.com routes to application/Controllers/Welcome.php
$routes->setDefaultController('Welcome');

The default controller is also used when no matching route has been found, and the URI would point to a directory
in the controllers directory. For example, if the user visits example.com/admin, if a controller was found at
/application/Controllers/admin/Home.php it would be used.

Default Method

This works similar to the default controller setting, but is used to determine the default method that is used
when a controller is found that matches the URI, but no segment exists for the method. The default value is
index:

$routes->setDefaultMethod('listAll');

In this example, if the user were to visit example.com/products, and a Products controller existed, the
Products::listAll() method would be executed.

Translate URI Dashes

This option enables you to automatically replace dashes (‘-‘) with underscores in the controller and method
URI segments, thus saving you additional route entries if you need to do that. This is required, because the
dash isn’t a valid class or method name character and would cause a fatal error if you try to use it:

$routes->setTranslateURIDashes(true);

Use Defined Routes Only

When no defined route is found that matches the URI, the system will attempt to match that URI against the
controllers and methods as described above. You can disable this automatic matching, and restrict routes
to only those defined by you, by setting the setAutoRoute() option to false:

$routes->setAutoRoute(false);

404 Override

When a page is not found that matches the current URI, the system will show a generic 404 view. You can change
what happens by specifying an action to happen with the set404Override() option. The value can be either
a valid class/method pair, just like you would show in any route, or a Closure:

// Would execute the show404 method of the App\Errors class
$routes->set404Override('App\Errors::show404');

// Will display a custom view
$routes->set404Override(function(){
 echo view('my_errors/not_found.html');
});

Discovering Module Routes

If you are using modular code, then this setting will specify whether or not additional
Routes files should be scanned for within each of the PSR4 namespaces defined in /application/Config/Autoload.php.

$routes->discoverLocal(false);

Testing

FSO has been built to make testing both the framework and your application as simple as possible.
Support for PHPUnit is built in, and a phpunit.xml file is already setup for your application.
It also provides a number of convenient helper methods to make testing every aspect of your application
as painless as possible.

	Testing Your Application

	The Test Class

	Mocking Services

	Testing Your Database

	The Test Class

	Test Database Setup

	Helper Methods

Testing Your Application

The Test Class

In order to take advantage of the additional tools provided, your tests must extend \CIUnitTestCase:

class MyTests extends \CIUnitTestCase
{
 . . .
}

Note

More features are planned, but are not implemented yet. Stay tuned.

Mocking Services

You will often find that you need to mock one of the services defined in application/Config/Services.php to limit
your tests to only the code in question, while simulating various responses from the services. This is especially
true when testing controllers and other integration testing. FSO makes this simple.

While in test mode, the system loads a wrapper around the Services class that provides two new methods,
injectMock(), and reset().

injectMock()

This method allows you to define the exact instance that will be returned by the Services class. You can use this to
set properties of a service so that it behaves in a certain way, or replace a service with a mocked class.

public function testSomething()
{
 $curlrequest = $this->getMockBuilder('FSO\HTTP\CURLRequest')
 ->setMethods(['request'])
 ->getMock();
 Services::injectMock('curlrequest', $curlrequest);

 // Do normal testing here....
}

The first parameter is the service that you are replacing. The name must match the function name in the Services
class exactly. The second parameter is the instance to replace it with.

reset()

Removes all mocked classes from the Services class, bringing it back to its original state.

Testing Your Database

The Test Class

In order to take advantage of the built-in database tools that FSO provides for testing, your
tests must extend \CIDatabaseTestCase:

class MyTests extends \CIDatabaseTestCase
{
 . . .
}

Because special functionality is ran during the setUp() and tearDown() phases, you must ensure
that you call the parent’s methods if you need to use those methods, otherwise you will lose much
of the functionality described here.

class MyTests extends \CIDatabaseTestCase
{
 public function setUp()
 {
 parent::setUp();

 // Do something here....
 }

 public function tearDown()
 {
 parent::tearDown();

 // Do something here....
 }
}

Test Database Setup

When running database tests, you need to provide a database that can be used during testing. Instead of
using the PHPUnit built-in database features, the framework provides tools specific to FSO. The first
step is to ensure that you have a tests database group setup in application/Config/Database.php.
This specifies a database connection that is only used while running tests, to keep your other data safe.

If you have multiple developers on your team, you will likely want to keep your credentials store in
the .env file. To do so, edit the file to ensure the following lines are present, and have the
correct information:

database.tests.dbdriver = 'MySQLi';
database.tests.username = 'root';
database.tests.password = '';
database.tests.database = '';

Migrations and Seeds

When running tests you need to ensure that your database has the correct schema setup, and that
it is in a known state for every test. You can use migrations and seeds to setup your database,
by adding a couple of class properties to your test.

class MyTests extends \CIDatabaseTestCase
{
 protected $refresh = true;
 protected $seed = 'TestSeeder';
 protected $basePath = 'path/to/database/files';
}

$refresh

This boolean value determines whether the database is completely refreshed before every test. If true,
all migrations are rolled back to version 0, then the database is migrated to the latest available migration.

$seed

If present and not empty, this specifies the name of a Seed file that is ran to populate the database with
test data prior to every test running.

$basePath

By default, FSO will look in tests/_support/database/migrations and tests/_support_database/seeds
to locate the migrations and seeds that it should run during testing. You can change this directory by specifying
the path in the $basePath property. This should not include the migrations or seeds directories, but
the path to the single directory that holds both of those sub-directories.

Helper Methods

The CIDatabaseTestCase class provides several helper methods to aid in testing your database.

seed($name)

Allows you to manually load a Seed into the database. The only parameter is the name of the seed to run. The seed
must pe present within the path specified in $basePath.

dontSeeInDatabase($table, $criteria)

Asserts that a row with criteria matching the key/value pairs in $criteria DOES NOT exist in the database.

$criteria = [
 'email' => 'joe@example.com',
 'active' => 1
];
$this->dontSeeInDatabase('users', $criteria);

seeInDatabase($table, $criteria)

Asserts that a row with criteria matching the key/value pairs in $criteria DOES exist in the database.

$criteria = [
 'email' => 'joe@example.com',
 'active' => 1
];
$this->seeInDatabase('users', $criteria);

grabFromDatabase($table, $column, $criteria)

Returns the value of $column from the specified table where the row matches $criteria. If more than one
row is found, it will only test against the first one.

$username = $this->grabFromDatabase('users', 'username', ['email' => 'joe@example.com']);

hasInDatabase($table, $data)

Inserts a new row into the database. This row is removed after the current test runs. $data is an associative
array with the data to insert into the table.

$data = [
 'email' => 'joe@example.com',
 'name' => 'Joe Cool'
];
$this->hasInDatabase('users', $data);

seeNumRecords($expected, $table, $criteria)

Asserts that a number of matching rows are found in the database that match $criteria.

$criteria = [
 'deleted' => 1
];
$this->seeNumRecords(2, 'users', $criteria);

FSO URLs

在默认情况下，FSO 中的 URL 被设计成对搜索引擎和用户友好的样式。 不同于使用传统的在动态系统中使用代词的标准 “查询字符串” 的方式，FSO 使用基于段的方法:

example.com/news/article/my_article

URI分段

如果遵循模型-视图-控制器模式，那么 URI 中的每一段通常表示下面的含义:

example.com/class/method/ID

	第一段表示要调用的控制器 类 ;

	第二段表示要调用的类中的 函数 或 方法 ；

	第三段以及后面的段代表传给控制器的参数，如 ID 或其他任何变量；

URI 类 和 URL 辅助函数 包含了一些函数可以让你更容易的处理 URI 数据。此外，可以通过 URI 路由 的方式进行重定向你的 URL 从而使得程序更加灵活。

移除 index.php 文件

默认情况，你的 URL 中会包含 index.php 文件:

example.com/index.php/news/article/my_article

如果你的服务器支持重写 URL ，那么通过 URL 重写，我们可以轻易的去除这个文件。在不同的服务器中，处理方式各异，故而如下我们主要展示两个最为通用的Web服务器。

Apache服务器

Apache需要开启 mod_rewrite 扩展。当开启时，我们可以使用一个 .htaccess 文件以及一些简单的规则来实现 URL 重写。如下为这个文件的一个样例，其中使用了”否定“方法来排除某些不需要重定向的项目:

RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule ^(.*)$ index.php/$1 [L]

在上面的例子中，除已存在的目录和文件外，其他的 HTTP 请求都会经过你的 index.php 文件。

Note

这些规则并不是对所有服务器配置都有效。

Note

确保使用上面的规则时，排除掉那些你希望能直接访问到的资源。

NGINX

在NGINX中，我们可以定义一个 location 块并用 try_files 导向来取得如上文中 Apache 配置一样的效果:

location / {
try_files $uri $uri/ /index.php/$args;
}

服务器将会首先寻找符合对应 URI 的文件或目录（对于每个文件，通过根目录和别名目录来构建其完整的路径），然后再将其他的请求发送至 index.php 文件中。

View Cells

View Cells allow you to insert HTML that is generated outside of your controller. It simply calls the specified
class and method, which must return valid HTML. This method could be in an callable method, found in any class
that the autoloader can locate. The only restriction is that the class can not have any constructor parameters.
This is intended to be used within views, and is a great aid to modularizing your code.

<?= view_cell('\App\Libraries\Blog::recentPosts') ?>

In this example, the class App\Libraries\Blog is loaded, and the method recentPosts() is ran. That method
must return a string with the generated HTML. The method used can be either a static method or not. Either way works.

Cell Parameters

You can further refine the call by passing a string with a list of parameters in the second parameter that are passed
to the method as an array of key/value pairs, or a comma-seperated string of key/value pairs:

// Passing Parameter Array
<?= view_cell('\App\Libraries\Blog::recentPosts', ['category' => 'codeigniter', 'limit' => 5]) ?>

// Passing Parameter String
<?= view_cell('\App\Libraries\Blog::recentPosts', 'category=codeigniter, limit=5') ?>

public function recentPosts(array $params=[])
{
 $posts = $this->blogModel->where('category', $params['category'])
 ->orderBy('published_on', 'desc')
 ->limit($params['limit'])
 ->get();

 return view('recentPosts', ['posts' => $posts]);
}

Additionally, you can use parameter names that match the parameter variables in the method for better readability.
When you use it this way, all of the parameters must always be specified in the view cell call:

<?= view_cell('\App\Libraries\Blog::recentPosts', 'category=codeigniter, limit=5') ?>

public function recentPosts(int $limit, string $category)
{
 $posts = $this->blogModel->where('category', $category)
 ->orderBy('published_on', 'desc')
 ->limit($limit)
 ->get();

 return view('recentPosts', ['posts' => $posts]);
}

Cell Caching

You can cache the results of the view cell call by passing the number of seconds to cache the data for as the
third parameter. This will use the currently configured cache engine.

// Cache the view for 5 minutes
<?= view_cell('\App\Libraries\Blog::recentPosts', 'limit=5', 300) ?>

You can provide a custom name to use instead of the auto-generated one if you like, by passing the new name
as the fourth parameter:

// Cache the view for 5 minutes
<?= view_cell('\App\Libraries\Blog::recentPosts', 'limit=5', 300, 'newcacheid') ?>

View Parser

The View Parser can perform simple text substitution for
pseudo-variables contained within your view files.
It can parse simple variables or variable tag pairs.

Pseudo-variable names or control constructs are enclosed in braces, like this:

<html>
 <head>
 <title>{blog_title}</title>
 </head>
 <body>
 <h3>{blog_heading}</h3>

 {blog_entries}
 <h5>{title}</h5>
 <p>{body}</p>
 {/blog_entries}

 </body>
</html>

These variables are not actual PHP variables, but rather plain text
representations that allow you to eliminate PHP from your templates
(view files).

Note

FSO does not require you to use this class since
using pure PHP in your view pages (for instance using the
View renderer)
lets them run a little faster.
However, some developers prefer to use some form of template engine if
they work with designers who they feel would find some
confusion working with PHP.

Using the View Parser Class

The simplest method to load the parser class is through its service:

$parser = \Config\Services::parser();

Alternately, if you are not using the Parser class as your default renderer, you
can instantiate it directly:

$parser = new \FSO\View\Parser();

Then you can use any of the three standard rendering methods that it provides:
render(viewpath, options, save), setVar(name, value, context) and
setData(data, context). You will also be able to specify delimiters directly,
through the setDelimiters(left,right) method.

Using the Parser, your view templates are processed only by the Parser
itself, and not like a conventional view PHP script. PHP code in such a script
is ignored by the parser, and only substitutions are performed.

This is purposeful: view files with no PHP.

What It Does

The Parser class processes “PHP/HTML scripts” stored in the application’s view path.
These scripts have a .php extension, but can not contain any PHP.

Each view parameter (which we refer to as a pseudo-variable) triggers a substitution,
based on the type of value you provided for it. Pseudo-variables are not
extracted into PHP variables; instead their value is accessed through the pseudo-variable
syntax, where its name is referenced inside braces.

The Parser class uses an associative array internally, to accumulate pseudo-variable
settings until you call its render(). This means that your pseudo-variable names
need to be unique, or a later parameter setting will over-ride an earlier one.

This also impacts escaping parameter values for different contexts inside your
script. You will have to give each escaped value a unique parameter name.

Parser templates

You can use the render() method to parse (or render) simple templates,
like this:

$data = [
 'blog_title' => 'My Blog Title',
 'blog_heading' => 'My Blog Heading'
];

echo $parser->setData($data)
 ->render('blog_template');

View parameters are passed to setData() as an associative
array of data to be replaced in the template. In the above example, the
template would contain two variables: {blog_title} and {blog_heading}
The first parameter to render() contains the name of the view
file (in this example the file would be called blog_template.php),

Parser Configuration Options

Several options can be passed to the render() or renderString() methods.

	cache - the time in seconds, to save a view’s results; ignored for renderString()

	
	cache_name - the ID used to save/retrieve a cached view result; defaults to the viewpath;

	ignored for renderString()

	
	saveData - true if the view data parameters should be retained for subsequent calls;

	default is false

	
	cascadeData - true if pseudo-variable settings should be passed on to nested

	substitutions; default is true

echo $parser->render('blog_template', [
 'cache' => HOUR,
 'cache_name' => 'something_unique',
]);

Substitution Variations

There are three types of substitution supported: simple, looping, and nested.
Substitutions are performed in the same sequence that pseudo-variables were added.

The simple substitution performed by the parser is a one-to-one
replacement of pseudo-variables where the corresponding data parameter
has either a scalar or string value, as in this example:

$template = '<head><title>{blog_title}</title></head>';
$data = ['blog_title' => 'My ramblings'];

echo $parser->setData($data)->renderString($template);

// Result: <head><title>My ramblings</title></head>

The Parser takes substitution a lot further with “variable pairs”,
used for nested substitutions or looping, and with some advanced
constructs for conditional substitution.

When the parser executes, it will generally

	handle any conditional substitutions

	handle any nested/looping substutions

	handle the remaining single substitutions

Loop Substitutions

A loop substitution happens when the value for a pseudo-variable is
a sequential array of arrays, like an array of row settings.

The above example code allows simple variables to be replaced. What if
you would like an entire block of variables to be repeated, with each
iteration containing new values? Consider the template example we showed
at the top of the page:

<html>
 <head>
 <title>{blog_title}</title>
 </head>
 <body>
 <h3>{blog_heading}</h3>

 {blog_entries}
 <h5>{title}</h5>
 <p>{body}</p>
 {/blog_entries}

 </body>
</html>

In the above code you’ll notice a pair of variables: {blog_entries}
data… {/blog_entries}. In a case like this, the entire chunk of data
between these pairs would be repeated multiple times, corresponding to
the number of rows in the “blog_entries” element of the parameters array.

Parsing variable pairs is done using the identical code shown above to
parse single variables, except, you will add a multi-dimensional array
corresponding to your variable pair data. Consider this example:

$data = array(
 'blog_title' => 'My Blog Title',
 'blog_heading' => 'My Blog Heading',
 'blog_entries' => array(
 array('title' => 'Title 1', 'body' => 'Body 1'),
 array('title' => 'Title 2', 'body' => 'Body 2'),
 array('title' => 'Title 3', 'body' => 'Body 3'),
 array('title' => 'Title 4', 'body' => 'Body 4'),
 array('title' => 'Title 5', 'body' => 'Body 5')
)
);

echo $parser->setData($data)
 ->render('blog_template');

The value for the pseudo-variable blog_entries is a sequential
array of associative arrays. The outer level does not have keys associated
with each of the nested “rows”.

If your “pair” data is coming from a database result, which is already a
multi-dimensional array, you can simply use the database getResultArray()
method:

$query = $db->query("SELECT * FROM blog");

$data = array(
 'blog_title' => 'My Blog Title',
 'blog_heading' => 'My Blog Heading',
 'blog_entries' => $query->getResultArray()
);

echo $parser->setData($data)
 ->render('blog_template');

Nested Substitutions

A nested substitution happens when the value for a pseudo-variable is
an associative array of values, like a record from a database:

$data = array(
 'blog_title' => 'My Blog Title',
 'blog_heading' => 'My Blog Heading',
 'blog_entry' => array(
 'title' => 'Title 1', 'body' => 'Body 1'
)
);

echo $parser->setData($data)
 ->render('blog_template');

The value for the pseudo-variable blog_entry is an associative
array. The key/value pairs defined inside it will be exposed inside
the variable pair loop for that variable.

A blog_template that might work for the above:

<h1>{blog_title} - {blog_heading}</h1>
{blog_entry}
 <div>
 <h2>{title}</h2>
 <p>{body}{/p}
 </div>
{/blog_entry}

If you would like the other pseudo-variables accessible inside the “blog_entry”
scope, then make sure that the “cascadeData” option is set to true.

Comments

You can place comments in your templates that will be ignored and removed during parsing by wrapping the
comments in a {# #} symbols.

{# This comment is removed during parsing. #}
{blog_entry}
 <div>
 <h2>{title}</h2>
 <p>{body}{/p}
 </div>
{/blog_entry}

Cascading Data

With both a nested and a loop substitution, you have the option of cascading
data pairs into the inner substitution.

The following example is not impacted by cascading:

$template = '{name} lives in {location}{city} on {planet}{/location}.';

$data = ['name' => 'George',
 'location' => ['city' => 'Red City', 'planet' => 'Mars']];

echo $parser->setData($data)->renderString($template);
// Result: George lives in Red City on Mars.

This example gives different results, depending on cascading:

$template = '{location}{name} lives in {city} on {planet}{/location}.';

$data = ['name' => 'George',
 'location' => ['city' => 'Red City', 'planet' => 'Mars']];

echo $parser->setData($data)->renderString($template, ['cascadeData'=>false]);
// Result: {name} lives in Red City on Mars.

echo $parser->setData($data)->renderString($template, ['cascadeData'=>true]);
// Result: George lives in Red City on Mars.

Preventing Parsing

You can specify portions of the page to not be parsed with the {noparse}{/noparse} tag pair. Anything in this
section will stay exactly as it is, with no variable substition, looping, etc, happening to the markup between the brackets.

{noparse}
 <h1>Untouched Code</h1>
{/noparse}

Conditional Logic

The Parser class supports some basic conditionals to handle if, else, and elseif syntax. All if
blocks must be closed with an endif tag:

{if role=='admin'}
 <h1>Welcome, Admin!</h1>
{endif}

This simple block is converted to the following during parsing:

<?php if ($role=='admin'): ?>
 <h1>Welcome, Admin!</h1>
<?php endif ?>

All variables used within if statements must have been previously set with the same name. Other than that, it is
treated exactly like a standard PHP conditional, and all standard PHP rules would apply here. You can use any
of the comparison operators you would normally, like ==, ===, !==, <, >, etc.

{if role=='admin'}
 <h1>Welcome, Admin</h1>
{elseif role=='moderator'}
 <h1>Welcome, Moderator</h1>
{else}
 <h1>Welcome, User</h1>
{endif}

Note

In the background, conditionals are parsed using an eval(), so you must ensure that you take
care with the user data that is used within conditionals, or you could open your application up to security risks.

Escaping Data

By default, all variable substitution is escaped to help prevent XSS attacks on your pages. FSO’s esc method
supports several different contexts, like general html, when it’s in an HTML attr*, in **css, etc. If nothing
else is specified, the data will be assumed to be in an HTML context. You can specify the context used by using the esc
filter:

{ user_styles | esc(css) }
{ title }

There will be times when you absolutely need something to used and NOT escaped. You can do this by adding exclamation
marks to the opening and closing braces:

{! unescaped_var !}

Filters

Any single variable substitution can have one or more filters applied to it to modify the way it is presented. These
are not intended to drastically change the output, but provide ways to reuse the same variable data but with different
presentations. The esc filter discussed above is one example. Dates are another common use case, where you might
need to format the same data differently in several sections on the same page.

Filters are commands that come after the pseudo-variable name, and are separated by the pipe symbol, |:

// -55 is displayed as 55
{ value|abs }

If the parameter takes any arguments, they must be separated by commas and enclosed in parentheses:

{ created_at|date(Y-m-d) }

Multiple filters can be applied to the value by piping multiple ones together. They are processed in order, from
left to right:

{ created_at|date_modify(+5 days)|date(Y-m-d) }

Provided Filters

The following filters are available when using the parser:

	Filter

	Arguments

	Description

	Example

	abs

	
	Displays the absolute value of a number.

	{ v|abs }

	capitalize

	
	Displays the string in sentence case: all lowercase with first
letter capitalized.

	{ v|capitalize}

	date

	format (Y-m-d)

	A PHP date-compatible formatting string.

	{ v|date(Y-m-d) }

	date_modify

	value to add/subtract

	A strtotime compatible string to modify the date, like
+5 day or -1 week.

	{ v|date_modify(+1 day) }

	default

	default value

	Displays the default value if the variable is empty or undefined.

	{ v|default(just in case) }

	esc

	html, attr, css, js

	Specifies the context to escape the data.

	{ v|esc(attr) }

	excerpt

	phrase, radius

	Returns the text within a radius of words from a given phrase.
Same as excerpt helper function.

	{ v|excerpt(green giant, 20) }

	highlight

	phrase

	
	Highlights a given phrase within the text using ‘<mark></mark>’

	tags.

	{ v|highlight(view parser) }

	highlight_code

	
	Highlights code samples with HTML/CSS.

	{ v|highlight_code }

	limit_chars

	limit

	Limits the number of chracters to $limit.

	{ v|limit_chars(100) }

	limit_words

	limit

	Limits the number of words to $limit.

	{ v|limit_words(20) }

	lower

	
	Converts a string to lowercase.

	{ v|lower }

	nl2br

	
	Replaces all newline characters (n) to an HTML
 tag.

	{ v|nl2br }

	number_format

	places

	Wraps PHP number_format function for use within the parser.

	{ v|number_format(3) }

	prose

	
	Takes a body of text and uses the auto_typography() method to
turn it into prettier, easier-to-read, prose.

	{ v|prose }

	round

	places, type

	Rounds a number to the specified places. Types of ceil and
floor can be passed to use those functions instead.

	{ v|round(3) } { v|round(ceil) }

	strip_tags

	allowed chars

	Wraps PHP strip_tags. Can accept a string of allowed tags.

	{ v|strip_tags(
) }

	title

	
	Displays a “title case” version of the string, with all lowercase,
and each word capitalized.

	{ v|title }

	upper

	
	Displays the string in all lowercase.

	{ v|upper }

Custom Filters

You can easily create your own filters by editing application/Config/View.php and adding new entries to the
$filters array. Each key is the name the filter is called by in the view, and its value is any valid PHP
callable:

public $filters = [
 'abs' => '\FSO\View\Filters::abs',
 'capitalize' => '\FSO\View\Filters::capitalize',
];

Parser Plugins

Plugins allow you to extend the parser, adding custom features for each project. They can be any PHP callable, making
them very simple to implement. Within templates, plugins are specified by {+ +} tags:

{+ foo +} inner content {+ /foo +}

This example shows a plugin named foo. It can manipulate any of the content between its opening and closing tags.
In this example, it could work with the text ” inner content “. Plugins are processed before any pseudo-variable
replacements happen.

While plugins will often consist of tag pairs, like shown above, they can also be a single tag, with no closing tag:

{+ foo +}

Opening tags can also contain parameters that can customize how the plugin works. The parameters are represented as
key/value pairs:

{+ foo bar=2 baz="x y" }

Parameters can also be single values:

{+ include somefile.php +}

Provided Plugins

The following plugins are available when using the parser:

	Plugin

	Arguments

	Description

	Example

	current_url

	
	Alias for the current_url helper function.

	{+ current_url +}

	previous_url

	
	Alias for the previous_url helper function.

	{+ previous_url +}

	mailto

	email, title, attributes

	Alias for the mailto helper function.

	{+ mailto email=foo@example.com title=”Stranger Things” +}

	safe_mailto

	email, title, attributes

	Alias for the safe_mailto helper function.

	{+ safe_mailto email=foo@example.com title=”Stranger Things” +}

	lang

	language string

	Alias for the lang helper function.

	{+ lang number.terabyteAbbr +}

Registering a Plugin

At its simplest, all you need to do to register a new plugin and make it ready for use is to add it to the
application/Config/View.php, under the $plugins array. The key is the name of the plugin that is
used within the template file. The value is any valid PHP callable, including static class methods, and closures:

public $plugins = [
 'foo' => '\Some\Class::methodName',
 'bar' => function($str, array $params=[]) {
 return $str;
 },
];

If the callable is on its own, it is treated as a single tag, not a open/close one. It will be replaced by
the return value from the plugin:

public $plugins = [
 'foo' => '\Some\Class::methodName'
];

// Tag is replaced by the return value of Some\Class::methodName static function.
{+ foo +}

If the callable is wrapped in an array, it is treated as an open/close tag pair that can operate on any of
the content between its tags:

public $plugins = [
 'foo' => ['\Some\Class::methodName']
];

{+ foo +} inner content {+ /foo +}

Usage Notes

If you include substitution parameters that are not referenced in your
template, they are ignored:

$template = 'Hello, {firstname} {lastname}';
$data = array(
 'title' => 'Mr',
 'firstname' => 'John',
 'lastname' => 'Doe'
);
echo $parser->setData($data)
 ->renderString($template);

// Result: Hello, John Doe

If you do not include a substitution parameter that is referenced in your
template, the original pseudo-variable is shown in the result:

$template = 'Hello, {firstname} {initials} {lastname}';
$data = array(
 'title' => 'Mr',
 'firstname' => 'John',
 'lastname' => 'Doe'
);
echo $parser->setData($data)
 ->renderString($template);

// Result: Hello, John {initials} Doe

If you provide a string substitution parameter when an array is expected,
i.e. for a variable pair, the substitution is done for the opening variable
pair tag, but the closing variable pair tag is not rendered properly:

$template = 'Hello, {firstname} {lastname} ({degrees}{degree} {/degrees})';
$data = array(
 'degrees' => 'Mr',
 'firstname' => 'John',
 'lastname' => 'Doe',
 'titles' => array(
 array('degree' => 'BSc'),
 array('degree' => 'PhD')
)
);
echo $parser->setData($data)
 ->renderString($template);

// Result: Hello, John Doe (Mr{degree} {/degrees})

View Fragments

You do not have to use variable pairs to get the effect of iteration in
your views. It is possible to use a view fragment for what would be inside
a variable pair, and to control the iteration in your controller instead
of in the view.

An example with the iteration controlled in the view:

$template = '{menuitems}
 {title}
{/menuitems}';

$data = array(
 'menuitems' => array(
 array('title' => 'First Link', 'link' => '/first'),
 array('title' => 'Second Link', 'link' => '/second'),
)
);
echo $parser->setData($data)
 ->renderString($template);

Result:

 First Link
 Second Link

An example with the iteration controlled in the controller,
using a view fragment:

$temp = '';
$template1 = '{title}';
$data1 = array(
 array('title' => 'First Link', 'link' => '/first'),
 array('title' => 'Second Link', 'link' => '/second'),
);

foreach ($data1 as $menuitem)
{
 $temp .= $parser->setData($menuItem)->renderString();
}

$template = '{menuitems}';
$data = array(
 'menuitems' => $temp
);
echo $parser->setData($data)
 ->renderString($template);

Result:

 First Link
 Second Link

Class Reference

View Renderer

The view() function is a convenience function that grabs an instance of the
renderer service, sets the data, and renders the view. While this is often
exactly what you want, you may find times where you want to work with it more directly.
In that case you can access the View service directly:

$view = \Config\Services::renderer();

Alternately, if you are not using the View class as your default renderer, you
can instantiate it directly:

$view = new \FSO\View\View();

Important

You should create services only within controllers. If you need
access to the View class from a library, you should set that as a dependency
in your library’s constructor.

Then you can use any of the three standard methods that it provides:
render(viewpath, options, save), setVar(name, value, context) and setData(data, context).

What It Does

The View class processes conventional HTML/PHP scripts stored in the application’s view path,
after extracting view parameters into PHP variables, accessible inside the scripts.
This means that your view parameter names need to be legal PHP variable names.

The View class uses an associative array internally, to accumulate view parameters
until you call its render(). This means that your parameter (or variable) names
need to be unique, or a later variable setting will over-ride an earlier one.

This also impacts escaping parameter values for different contexts inside your
script. You will have to give each escaped value a unique parameter name.

No special meaning is attached to parameters whose value is an array. It is up
to you to process the array appropriately in your PHP code.

Method Chaining

The setVar() and setData() methods are chainable, allowing you to combine a
number of different calls together in a chain:

$view->setVar('one', $one)
 ->setVar('two', $two)
 ->render('myView');

Escaping Data

When you pass data to the setVar() and setData() functions you have the option to escape the data to protect
against cross-site scripting attacks. As the last parameter in either method, you can pass the desired context to
escape the data for. See below for context descriptions.

If you don’t want the data to be escaped, you can pass null or raw as the final parameter to each function:

$view->setVar('one', $one, 'raw');

If you choose not to escape data, or you are passing in an object instance, you can manually escape the data within
the view with the esc() function. The first parameter is the string to escape. The second parameter is the
context to escape the data for (see below):

<?= \esc($object->getStat()) ?>

Escaping Contexts

By default, the esc() and, in turn, the setVar() and setData() functions assume that the data you want to
escape is intended to be used within standard HTML. However, if the data is intended for use in Javascript, CSS,
or in an href attribute, you would need different escaping rules to be effective. You can pass in the name of the
context as the second parameter. Valid contexts are ‘html’, ‘js’, ‘css’, ‘url’, and ‘attr’:

<a href="<?= esc($url, 'url') ?>" data-foo="<?= esc($bar, 'attr') ?>">Some Link

<script>
 var siteName = '<?= esc($siteName, 'js') ?>';
</script>

<style>
 body {
 background-color: <?= esc('bgColor', 'css') ?>
 }
</style>

View Renderer Options

Several options can be passed to the render() or renderString() methods:

	cache - the time in seconds, to save a view’s results; ignored for renderString()

	
	cache_name - the ID used to save/retrieve a cached view result; defaults to the viewpath;

	ignored for renderString()

	saveData - true if the view data parameters should be retained for subsequent calls

Views

A view is simply a web page, or a page fragment, like a header, footer, sidebar, etc. In fact,
views can flexibly be embedded within other views (within other views, etc.) if you need
this type of hierarchy.

Views are never called directly, they must be loaded by a controller. Remember that in an MVC framework,
the Controller acts as the traffic cop, so it is responsible for fetching a particular view. If you have
not read the Controllers page, you should do so before continuing.

Using the example controller you created in the controller page, let’s add a view to it.

Creating a View

Using your text editor, create a file called BlogView.php and put this in it:

<html>
<head>
 <title>My Blog</title>
</head>
<body>
 <h1>Welcome to my Blog!</h1>
</body>
</html>

Then save the file in your application/Views directory.

Displaying a View

To load and display a particular view file you will use the following function:

echo view('name');

Where _name_ is the name of your view file.

Important

The .php file extension does not need to be specified, but all views are expected to end with the .php extension.

Now, open the controller file you made earlier called Blog.php, and replace the echo statement with the view function:

class Blog extends \FSO\Controller
{
 public function index()
 {
 echo view('BlogView');
 }
}

If you visit your site using the URL you did earlier you should see your new view. The URL was similar to this:

example.com/index.php/blog/

Note

While all of the examples show echo the view directly, you can also return the output from the view, instead,
and it will be appended to any captured output.

Loading Multiple Views

FSO will intelligently handle multiple calls to view() from within a controller. If more than one
call happens they will be appended together. For example, you may wish to have a header view, a menu view, a
content view, and a footer view. That might look something like this:

class Page extends \FSO\Controller
{
 public function index()
 {
 $data = [
 'page_title' => 'Your title'
];

 echo view('header');
 echo view('menu');
 echo view('content', $data);
 echo view('footer');
 }
}

In the example above, we are using “dynamically added data”, which you will see below.

Storing Views within Sub-directories

Your view files can also be stored within sub-directories if you prefer that type of organization.
When doing so you will need to include the directory name loading the view. Example:

echo view('directory_name/file_name');

Namespaced Views

You can store views under a View directory that is namespaced, and load that view as if it was namespaced. While
PHP does not support loading non-class files from a namespace, FSO provides this feature to make it possible
to package your views together in a module-like fashion for easy re-use or distribution.

If you have Blog directory that has a PSR-4 mapping setup in the Autoloader living
under the namespace Example\Blog, you could retrieve view files as if they were namespaced also. Following this
example, you could load the BlogView file from /blog/views by prepending the namespace to the view name:

echo view('Example\Blog\Views\BlogView');

Caching Views

You can cache a view with the view command by passing a cache option with the number of seconds to cache
the view for, in the third parameter:

// Cache the view for 60 seconds
echo view('file_name', $data, ['cache' => 60]);

By default, the view will be cached using the same name as the view file itself. You can customize this by passing
along cache_name and the cache ID you wish to use:

// Cache the view for 60 seconds
echo view('file_name', $data, ['cache' => 60, 'cache_name' => 'my_cached_view']);

Adding Dynamic Data to the View

Data is passed from the controller to the view by way of an array in the second parameter of the view function.
Here’s an example:

$data = [
 'title' => 'My title',
 'heading' => 'My Heading',
 'message' => 'My Message'
];

echo view('blogview', $data);

Let’s try it with your controller file. Open it and add this code:

class Blog extends \FSO\Controller
{
 public function index()
 {
 $data['title'] = "My Real Title";
 $data['heading'] = "My Real Heading";

 echo view('blogview', $data);
 }
}

Now open your view file and change the text to variables that correspond to the array keys in your data:

<html>
<head>
 <title><?= $title ?></title>
</head>
<body>
 <h1><?= $heading ?></h1>
</body>
</html>

Then load the page at the URL you’ve been using and you should see the variables replaced.

The data passed in is only available during one call to view. If you call the function multiple times
in a single request, you will have to pass the desired data to each view. This keeps any data from “bleeding” into
other views, potentially causing issues. If you would prefer the data to persist, you can pass the saveData option
into the $option array in the third parameter.

$data = [
 'title' => 'My title',
 'heading' => 'My Heading',
 'message' => 'My Message'
];

echo view('blogview', $data, ['saveData' => true]);

Additionally, if you would like the default functionality of the view method to be that it does save the data
between calls, you can set $saveData to true in application/Config/Views.php.

Creating Loops

The data array you pass to your view files is not limited to simple variables. You can pass multi dimensional
arrays, which can be looped to generate multiple rows. For example, if you pull data from your database it will
typically be in the form of a multi-dimensional array.

Here’s a simple example. Add this to your controller:

class Blog extends \FSO\Controller
{
 public function index()
 {
 $data = [
 'todo_list' => ['Clean House', 'Call Mom', 'Run Errands'],
 'title' => "My Real Title",
 'heading' => "My Real Heading"
];

 echo view('blogview', $data);
 }
}

Now open your view file and create a loop:

<html>
<head>
 <title><?= $title ?></title>
</head>
<body>
 <h1><?= $heading ?></h1>

 <h3>My Todo List</h3>

 <?php foreach ($todo_list as $item):?>

 <?= $item ?>

 <?php endforeach;?>

</body>
</html>

Cookie Helper

The Cookie Helper file contains functions that assist in working with
cookies.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

helper('cookie');

Available Functions

The following functions are available:

Filesystem Helper

The Directory Helper file contains functions that assist in working with
directories.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

helper('filesystem');

Available Functions

The following functions are available:

Form Helper

The Form Helper file contains functions that assist in working with
forms.

	Loading this Helper

	Escaping field values

	Available Functions

Loading this Helper

This helper is loaded using the following code:

helper('form');

Escaping field values

You may need to use HTML and characters such as quotes within your form
elements. In order to do that safely, you’ll need to use
common function
esc().

Consider the following example:

$string = 'Here is a string containing "quoted" text.';

<input type="text" name="myfield" value="<?= $string; ?>" />

Since the above string contains a set of quotes, it will cause the form
to break. The :php:func:`esc()` function converts HTML special
characters so that it can be used safely:

<input type="text" name="myfield" value="<?= esc($string); ?>" />

Note

If you use any of the form helper functions listed on this page,
the form values will be automatically escaped, so there is no need
to call this function. Use it only if you are creating your own
form elements.

Available Functions

The following functions are available:

HTML Helper

The HTML Helper file contains functions that assist in working with
HTML.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

helper('html');

Available Functions

The following functions are available:

Inflector Helper

The Inflector Helper file contains functions that permits you to change
English words to plural, singular, camel case, etc.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

helper('inflector');

Available Functions

The following functions are available:

Number Helper

The Number Helper file contains functions that help you work with
numeric data in a locale-aware manner.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

helper('number');

Available Functions

The following functions are available:

Security Helper

The Security Helper file contains security related functions.

Contents

	Security Helper

	Loading this Helper

	Available Functions

	local

	

Loading this Helper

This helper is loaded using the following code:

helper('security');

Available Functions

The following functions are available:

Text Helper

The Text Helper file contains functions that assist in working with Text.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

helper('text');

Available Functions

The following functions are available:

URL Helper

The URL Helper file contains functions that assist in working with URLs.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is automatically loaded by the framework on every request.

Available Functions

The following functions are available:

Downloading FSO

	FSO v4.0.0-dev (Upcoming version) [https://codeload.github.com/bcit-ci/FSO/zip/develop]

GitHub

Git [http://git-scm.com/about] is a distributed version control system.

Public Git access is available at GitHub [https://github.com/bcit-ci/FSO].
Please note that while every effort is made to keep this code base
functional, we cannot guarantee the functionality of code taken from
the develop branch.

Stable versions are also available via GitHub Releases [https://github.com/bcit-ci/FSO/releases].

Local Development Server

PHP provides a built-in web server that is can be used locally when developing an application without
the need to setup a dedicated web server like MAMP, XAMPP, etc. If you have PHP installed on your
development machine, you can use the serve script to launch PHP’s built-in server and have
it all setup to work with your FSO application. To launch the server type the following
from the command line in the main directory:

> php serve

This will launch the server and you can now view your application in your browser at http://localhost:8080.

Note

The built-in development server should only be used on local development machines. It should NEVER
be used on a production server.

Customization

If you need to run the site on a different host than simply localhost, you’ll first need to add the host
to your hosts file. The exact location of the file varies in each of the main operating systems, though
all nix-type systems (include OS X) will typically keep the file at */etc/hosts**.

Once that is done you can use the --host CLI option to specify a different host to run the application at:

> php serve --host=example.dev

By default, the server runs on port 8080 but you might have more than one site running, or already have
another application using that port. You can use the --port CLI option to specify a different one:

> php serve --port=8081

Troubleshooting

Here are some common installation problems, and suggested workarounds.

I have to include index.php in my URL

If a URL like /mypage/find/apple doesn’t work, but the similar
URL /index.php/mypage/find/apple does, then your .htaccess rules
(for Apache) are not setup properly.

Only the default page loads

If you find that no matter what you put in your URL only your default
page is loading, it might be that your server does not support the
REQUEST_URI variable needed to serve search-engine friendly URLs. As a
first step, open your application/Config/App.php file and look for
the URI Protocol information. It will recommend that you try a couple of
alternate settings. If it still doesn’t work after you’ve tried this
you’ll need to force FSO to add a question mark to your URLs. To
do this open your application/Config/App.php file and change this:

public $indexPage = 'index.php';

To this:

public $indexPage = 'index.php?';

 TODO: rewrite for FSO

Upgrading from 3.x to 4.x

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your FSO files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Step 2: Change database connection handling

“Loading” a database, whether by using the config/autoload.php settings
or manually via calling $this->load->database() or the less-known
DB() function, will now throw a RuntimeException in case of a
failure.

In addition, being unable to set the configured character set is now also
considered a connection failure.

Note

This has been the case for most database drivers in the in the
past as well (i.e. all but the ‘mysql’, ‘mysqli’ and ‘postgre’
drivers).

What this means is that if you’re unable to connect to a database, or
have an erroneous character set configured, FSO will no longer
fail silently, but will throw an exception instead.

You may choose to explicitly catch it (and for that purpose you can’t use
config/autoload.php to load the Database Class)

try
{
 $this->load->database();
}
catch (RuntimeException $e)
{
 // Handle the failure
}

Or you may leave it to FSO’s default exception handler, which would
log the error message and display an error screen if you’re running in
development mode.

Remove db_set_charset() calls

With the above-mentioned changes, the purpose of the db_set_charset()
method would now only be to change the connection character set at runtime.
That doesn’t make sense and that’s the reason why most database drivers
don’t support it at all.
Thus, db_set_charset() is no longer necessary and is removed.

Step 3: Check logic related to URI parsing of CLI requests

When running a FSO application from the CLI, the
URI Library will now ignore the
$config['url_suffix'] and $config['permitted_uri_chars']
configuration settings.

These two options don’t make sense under the command line (which is why
this change was made) and therefore you shouldn’t be affected by this, but
if you’ve relied on them for some reason, you’d probably have to make some
changes to your code.

Step 4: Check Cache Library configurations for Redis, Memcache(d)

The new improvements for the ‘redis’ and ‘memcached’ drivers of the
Cache Library may require some small
adjustments to your configuration values …

Redis

If you’re using the ‘redis’ driver with a UNIX socket connection, you’ll
have to move the socket path from $config['socket'] to
$config['host'] instead.

The $config['socket_type'] option is also removed, although that won’t
affect your application - it will be ignored and the connection type will
be determined by the format used for $config['host'] instead.

Memcache(d)

The ‘memcached’ will now ignore configurations that don’t specify a host
value (previously, it just set the host to the default ‘127.0.0.1’).

Therefore, if you’ve added a configuration that only sets e.g. a port,
you will now have to explicitly set the host to ‘127.0.0.1’ as well.

Step 5: Check usage of doctype() HTML helper

The HTML Helper function
:php:func:`doctype()` used to default to ‘xhtml1-strict’ (XHTML 1.0 Strict)
when no document type was specified. That default value is now changed to
‘html5’, which obviously stands for the modern HTML 5 standard.

Nothing should be really broken by this change, but if your application
relies on the default value, you should double-check it and either
explicitly set the desired format, or adapt your front-end to use proper
HTML 5 formatting.

Upgrading From a Previous Version

Please read the upgrade notes corresponding to the version you are
upgrading from.

	Upgrading from 3.x to 4.x

Autoloading Files

Every application consists of a large number of classes in many different locations.
The framework provides classes for core functionality. Your application will have a
number of libraries, models, and other entities to make it work. You might have third-party
classes that your project is using. Keeping track of where every single file is, and
hard-coding that location into your files in a series of requires() is a massive
headache and very error-prone. That’s where autoloaders come in.

FSO provides a very flexible autoloader that can be used with very little configuration.
It can locate individual non-namespaced classes, namespaced classes that adhere to
PSR4 [http://www.php-fig.org/psr/psr-4/] autoloading
directory structures, and will even attempt to locate classes in common directories (like Controllers,
Models, etc).

For performance improvement, the core FSO components have been added to the classmap.

The autoloader works great by itself, but can also work with other autoloaders, like
Composer [https://getcomposer.org], or even your own custom autoloaders, if needed.
Because they’re all registered through
spl_autoload_register [http://php.net/manual/en/function.spl-autoload-register.php],
they work in sequence and don’t get in each other’s way.

The autoloader is always active, being registered with spl_autoload_register() at the
beginning of the framework’s execution.

Configuration

Initial configuration is done in /application/Config/Autoload.php. This file contains two primary
arrays: one for the classmap, and one for PSR4-compatible namespaces.

Namespaces

The recommended method for organizing your classes is to create one or more namespaces for your
application’s files. This is most important for any business-logic related classes, entity classes,
etc. The psr4 array in the configuration file allows you to map the namespace to the directory
those classes can be found in:

$psr4 = [
 'App' => APPPATH,
 'FSO' => BASEPATH,
];

The key of each row is the namespace itself. This does not need a trailing slash. If you use double-quotes
to define the array, be sure to escape the backwards slash. That means that it would be My\\App,
not My\App. The value is the location to the directory the classes can be found in. They should
have a trailing slash.

By default, the application folder is namespace to the App namespace. While you are not forced to namespace the controllers,
libraries, or models in the application directory, if you do, they will be found under the App namespace.
You may change this namespace by editing the /application/Config/Constants.php file and setting the
new namespace value under the APP_NAMESPACE setting:

define('APP_NAMESPACE', 'App');

You will need to modify any existing files that are referencing the current namespace.

Important

Config files are namespaced in the Config namespace, not in App\Config as you might
expect. This allows the core system files to always be able to locate them, even when the application
namespace has changed.

Classmap

The classmap is used extensively by FSO to eke the last ounces of performance out of the system
by not hitting the file-system with extra file_exists() calls. You can use the classmap to link to
third-party libraries that are not namespaced:

$classmap = [
 'Markdown' => APPPATH .'third_party/markdown.php'
];

The key of each row is the name of the class that you want to locate. The value is the path to locate it at.

Legacy Support

If neither of the above methods find the class, and the class is not namespaced, the autoloader will look in the
/application/Libraries and /application/Models directories to attempt to locate the files. This provides
a measure to help ease the transition from previous versions.

There are no configuration options for legacy support.

Working With HTTP Requests

In order to get the most out of FSO, you need to have a basic understanding of how HTTP requests
and responses work. Since this is what you work with while developing web applications, understanding the
concepts behind HTTP is a must for all developers that want to be successful.

The first part of this chapter gives an overview. After the concepts are out of the way, we will discuss
how to work with the requests and responses within FSO.

What is HTTP?

HTTP is simply a text-based language that allows two machines to talk to each other. When a browser
requests a page, it asks the server if it can get the page. The server then prepares the page and sends
response back to the browser that asked for it. That’s pretty much it. Obviously, there are some complexities
that you can use, but the basics are really pretty simple.

HTTP is the term used to describe that language. It stands for HyperText Transfer Protocol. Your goal when
you develop web applications is to always understand what the browser is requesting, and be able to
respond appropriately.

The Request

Whenever a client makes a request (a web browser, smartphone app, etc), it is sending a small text message
to the server and waits for a response.

The request would look something like this:

GET / HTTP/1.1
Host codeigniter.com
Accept: text/html
User-Agent: Chrome/46.0.2490.80

This message displays all of the information necessary to know what the client is requesting. It tells the
method for the request (GET, POST, DELETE, etc), and the version of HTTP it supports.

The request also includes a number of optional request headers that can contain a wide variety of
information such as what languages the client wants the content displayed as, the types of formats the
client accepts, and much more. Wikipedia has an article that lists all header fields [https://en.wikipedia.org/wiki/List_of_HTTP_header_fields] if you want to look it over.

The Response

Once the server receives the request, your application will take that information and generate some output.
The server will bundle your output as part of its response to the client. This is also represented as
a simple text message that looks something like this:

HTTP/1.1 200 OK
Server: nginx/1.8.0
Date: Thu, 05 Nov 2015 05:33:22 GMT
Content-Type: text/html; charset=UTF-8

<html>
 . . .
</html>

The response tells the client what version of the HTTP specification that it’s using and, probably most
importantly, the status code (200). The status code is one of a number of codes that have been standardized
to have a very specific meaning to the client. This can tell them that it was successful (200), or that the page
wasn’t found (404). Head over to IANA for a full list of HTTP status codes [https://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml].

Working with Requests and Responses

While PHP provides ways to interact with the request and response headers, FSO, like most frameworks,
abstract them so that you have a consistent, simple interface to them. The IncomingRequest class
is an object-oriented representation of the HTTP request. It provides everything you need:

use FSO\HTTP\IncomingRequest;

$request = new IncomingRequest(new \Config\App(), new \FSO\HTTP\URI());

// the URI being requested (i.e. /about)
$request->uri->getPath();

// Retrieve $_GET and $_POST variables
$request->getVar('foo');
$request->getGet('foo');
$request->getPost('foo');

// Retrieve JSON from AJAX calls
$request->getJSON();

// Retrieve server variables
$request->getServer('Host');

// Retrieve an HTTP Request header, with case-insensitive names
$request->getHeader('host');
$request->getHeader('Content-Type');

$request->getMethod(); // GET, POST, PUT, etc

The request class does a lot of work in the background for you, that you never need to worry about.
The isAJAX() and isSecure() methods check several different methods to determine the correct answer.

FSO also provides a Response class that is an object-oriented representation
of the HTTP response. This gives you an easy and powerful way to construct your response to the client:

use FSO\HTTP\Response;

$response = new Response();

$response->setStatusCode(Response::HTTP_OK);
$response->setBody($output);
$response->setHeader('Content-type', 'text/html');
$response->noCache();

// Sends the output to the browser
$response->send();

In addition, the Response class allows you to work the HTTP cache layer for the best performance.

近年国外大气科学外场试验及其目标观测设计方法

在过去的二十年中，数据同化方案已经发展到非常复杂的系统，如在欧洲中期天气预报中心（ECMWF）运行的四维变分系统（4D-Var） 。该方案处理大量的
空间和地基气象观测。它将观测结果与大气状态的先验（或背景）信息相结合，并使用全面的（线性化的）预测模型来确保观测在分析中得到动态的现实的
和统计上可能的响应。对这样一个复杂的系统进行有效的性能监测已经成为绝对必要的，自由度为107度，每12小时同化周期有106个以上的观测值。每个观
测对分析的贡献的评估是数据同化和数值天气预报中最具挑战性的诊断之一。数据同化方案中观测影响的方法已经被推导出来。这些技术显示了在同化过程
中如何分配影响，哪些划分给予了观察，哪些划分给了背景或伪观察。因此，它们提供了模型和观测之间拟合的鲁棒性的指示，并允许对同化系统中分配的
权重进行一些调整。近来，基于伴随的观测灵敏度技术已经被使用（Baker和Daley 2000，Langland和Baker 2004，Cardinali和Buizza，2004，Morneau等>，2006，Xu和Langlang，2006，Zhu和Gelaro 2008）对预测的贡献，其中对代表短期预测误差的标量函数评估观测影响。一般而言，伴随方法可用于估计相
对于同化系统重要性的任何参数的灵敏度测量。最近，Daescu（2008）根据主要输入参数：观测值，背景和它们的误差协方差矩阵，从一阶必要条件导出了
无约束的变分资料同化系统的敏感性方程。本文提供了理论进一步诊断工具开发的框架不仅要评估观测对预测的影响，还要评估其他分析参数的影响。对背
景协方差矩阵的敏感性有助于评估背景权重及其相关性的正确说明。协方差矩阵的局限性和弱点是众所周知的，有几个假设和简化来推导它们。 Desroziers和Ivanov（2001）和Chapnik等人（2006）讨论了诊断和调整数据同化方案中误差方差的重要性。在过去的几年中，观测系统实验（OSE）一直是预测系统>中估计数据影响的传统工具。通常，通过从同化系统中去除观测子集来执行OSE，并将预测与包括所有观测的对照实验进行比较。通过比较不同统计方法获>得的预测技能，评估观测值在预测中的价值，并且需要进行相当长时间（几个月）的若干独立实验以确保结果具有统计显着性。如果对GOS（全球观测系统>）的不同组成部分进行全面调查，那么对给定观测类型的价值的评估可能会变得非常昂贵。显然，基于伴随的观测技术和OSE技术之间存在一些基本差异：

[image: ../_images/FSOWorkflow.png]
基于伴随观测灵敏度技术测量的是整个观测数据集出现在同化系统中时的观测影响，而观测系统在OSE上下文中进行了修正。实际上，每个OSE实验在同化观
测方面都与其他实验不同。基于伴随观测灵敏度技术测量单个预测度量对观测系统所有扰动的响应，而OSE测量单个扰动对所有预测度量的影响。基于伴随>的技术受到切线性假设的限制，有效期长达3天。此外，通常使用简化的伴随模型来将预测误差信息向后传递，这进一步限制了线性假设的有效性，并因此>将诊断的使用限制在典型的24-48小时的预测范围内。使用简化的伴随模型的一个含意是，如果传播的反向信号较弱，则伴随整合所获得的分析不确定性可>能是不正确的。另一方面，OSE可以衡量数据对远程预测的影响。基于伴随观测灵敏度技术测量在单一分析时间被同化的所有观测值的影响，而OSE包括之前
被同化的观测值的影响，因为他们比较了修正的卡尔曼增益矩阵。本文的目的是双重的：说明在操作环境中可以用基于伴随的观测灵敏度进行的调查和诊断
的类型，并提供系统中的整体观察性能。在这方面，伴随工具是基于最近在ECMWF进行的那些OSE的控制实验的预测误差以及最后实施的操作模型的预测误差
。本文中，估计对观测值的预测敏感度作为调查短期预报误差来源的诊断工具，并与观测系统实验进行定性对比在第2节中，预测敏感度（观测和背景）的>理论背景，数值解和显示了来自观察的预测误差贡献的计算。此外，总结了调查中使用的OSE。结果在第3节中说明。第4节给出结论。

对目标观测设计，国外近些年针对一些重要灾害性天气事件开展了一系列大型的大气科学外场试验，在实际条件下进行了观测布局和相关数值预报效果的研究。这些外场试验为目标观测设计思想，提供了实际验证的机会，极大地推动了目标观测设计的研究和应用。

主要的外场试验项目有 年开展的锋和大西 洋风暴路径试验ƒ≥×∞÷ ƒ ≥ 2 × ∞¬ ≈ 和 年的北太平洋试验 °∞÷ ° ∞¬ ≈ ∀ƒ≥×∞÷ 是 第一个包含了目标观测设计思想并首次实时试验的 外场试验 预报对象主要为影响欧洲的北大西洋中纬 度气旋 目标观测区域覆盖了整个大西洋 ∀而 2 °∞÷ 试验中位于太平洋的目标观测区域远大于 ƒ≥2 ×∞÷位于大西洋的目标区并且紧随 ƒ≥×∞÷ 开展 的 °∞÷ 试验有 ƒ≥×∞÷试验的一些美国科学家 参与试验的设计和实施 使得该次试验对目标观测设 计的研究和应用得到了进一步的深入与完善 ∀此外 还有于 年 ! 年开展的 目标区位于东北太平 洋的冬季风暴勘察项目•≥°• ≥ 2 ° ≈等

安全指南

我们需要认真对待安全问题。
FSO有多项功能和技术来执行良好的安全习惯，这样你需要做的就比较简单。

我们尊重 开放式Web应用程序安全项目 (OWASP) [https://www.owasp.org] 组织并且尽可能遵循他们的建议。

以下是来自 OWASP Top Ten Cheat Sheet [https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet], 确定 Web 应用程序上的漏洞。针对每一个漏洞，我们提供了一个简短的描述和 OWASP 建议，然后根据 FSO 的规定来解决这个漏洞。

A1 注入

注入攻击是通过客户端的输入向应用程序发送部分或全部不适当的插入数据。攻击向量包括 SQL、XML、ORM、代码和缓冲区溢出。

OWASP 建议

	说明：设置正确的内容类型、字符集和区域

	提交：验证字段并且提供反馈

	控制器：净化输入；使用正确的字符集验证输入

	模型：参数化检查

FSO 规定

	HTTP library 提供输入字段和内容元数据的过滤

	表格验证库

A2 不严谨的的身份认证和会话管理

不充分的身份验证或不恰当的会话管理会导致用户获得比他们权限更大的权限。

OWASP 建议

	说明：验证认证和角色；用表格发送 CSRF token

	设计：只使用内置会话管理

	控制器：验证用户、角色、CSRF token

	模型：验证角色

	提示：考虑使用 request 管理器

FSO 规定

	Session 库

	HTTP library 提供对CSRF的验证

	方便添加第三方认证

A3 跨站脚本 (XSS)

输入验证不足导致其中一个用户可以将内容添加到一个网站，当其他用户查看该网站时，该网站可能是恶意的。

OWASP 建议

	说明：根据输出环境对所有用户数据进行转义；设置输入约束

	控制器：正确的输入验证

	提示：只处理可信数据；不要将 HTML 转义数据存入数据库中。

FSO 规定

	esc 函数

	表格验证库

A4 直接引用不安全的对象

当应用程序根据用户提供的输入提供直接访问时，就会发生不安全的直接对象引用。由于此漏洞，攻击者可以绕过系统中的授权直接访问资源，例如数据库记录或文件。

OWASP 建议

	说明：不要暴露内部数据；使用随机的参考图

	控制器：获得的数据来自可信任的来源或随机的参考图

	模型： 更新数据之前验证用户角色

FSO 规定

	表格验证库

	容易添加第三方认证

A5 安全配置错误

应用程序体系结构配置不当会导致可能危及整个架构安全性的错误。

OWASP 建议

	说明：强化 Web 和应用服务器；使用 HTTP 严格传输安全

	控制器：强化 Web 和应用服务器；保护 XML 堆栈

	模型：强化数据库服务器

FSO 规定

	bootstrap 合理的检查

A6 敏感信息泄露

敏感数据在通过网络传输时必须受到保护。敏感数据可以包括用户凭证和信用卡。根据经验，如果数据在存储时必须受到保护，那么它在传输过程中也必须受到保护。

OWASP 建议

	说明：使用 TLS1.2 （安全传输层协议）；使用强密码和哈希；不要把 keys 或哈希发送到浏览器

	控制器：使用强密码和哈希

	模型：加密和服务器的通信和授权

FSO 规定

	存储加密的会话密钥

A7 缺少功能级访问控制

敏感数据在通过网络传输时必须受到保护。敏感数据可以包括用户凭证和信用卡。根据经验，如果数据在存储时必须受到保护，那么它在传输过程中也必须受到保护。

OWASP 建议

	说明：确保非Web数据在Web根目录之外；验证用户和角色；发送 CSRF tokens

	控制器：验证用户和角色；验证 CSRF tokens

	模块： 验证角色而

FSO 规定

	公共文件夹，放在 application 和 system 外面

	HTTP library 提供 CSRF 验证

A8 跨站请求伪造（CSRF）

CSRF是一个强制最终用户在Web应用程序中，用他的当前认证执行不必要的行动的漏洞。

OWASP 建议

	说明：验证用户和角色；发送 CSRF tokens

	控制器：验证用户和角色；验证 CSRF tokens

	模型：验证角色

FSO 规定

	HTTP library 提供 CSRF 验证

A9 使用含有已知漏洞的组件

许多应用程序都可以利用漏洞和已知的攻击策略，获得远程控制或者得到数据。

OWASP 建议

	不要使用这些有漏洞的组件

FSO 规定

	添加第三方库时必须审查

A10 未验证的重定向和转发

错误的业务逻辑或注入可操作的代码可能会错误地重定向用户。

OWASP 建议

	说明：不要使用 URL 重定向；使用随机的间接引用

	控制器：不要使用 URL 重定向；使用随机的间接引用

	模型：验证角色

FSO 规定

	HTTP library 提供 …

	Session library provides flashdata

Services

Introduction

All of the classes within FSO are provided as “services”. This simply means that, instead
of hard-coding a class name to load, the classes to call are defined within a very simple
configuration file. This file acts as a type of factory to create new instances of the required class.

A quick example will probably make things clearer, so imagine that you need to pull in an instance
of the Timer class. The simplest method would simply be to create a new instance of that class:

$timer = new \FSO\Debug\Timer();

And this works great. Until you decide that you want to use a different timer class in its place.
Maybe this one has some advanced reporting the default timer does not provide. In order to do this,
you now have to locate all of the locations in your application that you have used the timer class.
Since you might have left them in place to keep a performance log of your application constantly
running, this might be a time-consuming and error-prone way to handle this. That’s where services
come in handy.

Instead of creating the instance ourself, we let a central class create an instance of the
class for us. This class is kept very simple. It only contains a method for each class that we want
to use as a service. The method typically returns a shared instance of that class, passing any dependencies
it might have into it. Then, we would replace our timer creation code with code that calls this new class:

$timer = \Config\Services::timer();

When you need to change the implementation used, you can modify the services configuration file, and
the change happens automatically throughout your application without you having to do anything. Now
you just need to take advantage of any new functionality and you’re good to go. Very simple and
error-resistant.

Note

It is recommended to only create services within controllers. Other files, like models
and libraries should have the dependencies either passed into the constructor or through a
setter method.

Convenience Functions

Two functions have been provided for getting a service. These functions are always available.

The first is service() which returns a new instance of the requested service. The only
required parameter is the service name. This is the same as the method name within the Services
file..Always returns a SHARED instance of the class, so calling the function multiple times should
always return the same instance.:

$logger = service('logger');

If the creation method requires additional parameters, they can be passed after the service name:

$renderer = service('renderer', APPPATH.'views/');

The second function, single_service() works just like service() but returns a new instance of
the class:

$logger = single_service(‘logger’);

Defining Services

To make services work well, you have to be able to rely on each class having a constant API, or
interface [http://php.net/manual/en/language.oop5.interfaces.php], to use. Almost all of
FSO’s classes provide an interface that they adhere to. When you want to extend or replace
core classes, you only need to ensure you meet the requirements of the interface and you know that
the classes are compatible.

For example, the RouterCollection class implements the RouterCollectionInterface. When you
want to create a replacement that provides a different way to create routes, you just need to
create a new class that implements the RouterCollectionInterface:

class MyRouter implements \FSO\Router\RouteCollectionInterface
{
 // Implement required methods here.
}

Finally, modify /application/Config/Services.php to create a new instance of MyRouter
instead of FSO\Router\RouterCollection:

public static function routes()
{
 return new \App\Router\MyRouter();
}

//--

Allowing Parameters

In some instances, you will want the option to pass a setting to the class during instantiation.
Since the services file is a very simple class, it is easy to make this work.

A good example is the renderer service. By default, we want this class to be able
to find the views at APPPATH.views/. We want the developer to have the option of
changing that path, though, if their needs require it. So the class accepts the $viewPath
as a constructor parameter. The service method looks like this:

public static function renderer($viewPath=APPPATH.'views/')
{
 return new \FSO\View\View($viewPath);
}

This sets the default path in the constructor method, but allows for easily changing
the path it uses:

$renderer = \Config\Services::renderer('/shared/views');

Shared Classes

There are occasions where you need to require that only a single instance of a service
is created. This is easily handled with the getSharedInstance() method that is called from within the
factory method. This handles checking if an instance has been created and saved
within the class, and, if not, creates a new one. All of the factory methods provide a
$getShared = true value as the last parameter. You should stick to the method also:

class Services
{
 public static function routes($getShared = false)
 {
 if (! $getShared)
 {
 return new \FSO\Router\RouteCollection();
 }

 return self::getSharedInstance('routes');
 }
}

目标观测设计

近些年来，数值预报技术得到了长足的发展，成为了实际业务和科学研究工作中的一个重要手段。 数值预报的效果受到基本原则和实践两方面的约束，前一种约束即Lorenz提出的混沌现象，也就是预报对象本身，存在一定可预报性的限制。而实践方面的约束则包括数值模式和初始条件的准确性，后者由观测的数量、质量以及用来同化这些观测的方法所决定。实践和研究表明：目前的技术水平下，最大的预报误差往往源于初始场的分析误差而非数值模式本身。由此，初始场的分析误差就成为了影响数值预报效果的重要因素。如果能分析和确定出初始场中分析误差急剧增长，并因此而使预报变坏的区域定义为敏感区。在这些敏感区域中增加观测或者提高观测质量，减少那些可能急剧增长的分析误差， 则可以改善随后的预报效果。然而，现实情况中，尽管随着观测探测手段与技术的发展，观测的数量和种类，包括常规观测与非常规观测，都得到了迅速的增加。 可是，观测布局总体上却仍是不尽合理的。 固定观测往往集中在人口居住地，之外则是大范围的观测稀少区。虽然在上述地区非常规观测成为了一种有效的弥补，但是这些观测如飞机、船舶与卫星等观测的时间和地点却是随机的，不依据于天气事件。同时，由于敏感区的位置与天气类型、大气气流等相关，并强烈依赖于预报时效。这样一来，就具体的预报事件，在对预报效果最重要的敏感区观测信息却常常是不够的。对此人们提出了一种思想，针对某一特定区域的天气事件 事先确定对预报最为关键的敏感区，在空间和时间上有针对性地优化观测布局。例如，利用飞机观测下投式探空仪或机动探空站等。 甚至可对观测密度较大，超过预报需要区域的观测进行调整，提高敏感区观测的覆盖程度和观测精度，减少可能快速增长的分析误差，从而取得预报最大改善的效益。这就是以目标为导向的目标观测设计。这种设计可以协调多种观测的综合使用，有效发挥各种观测的效能，提高对具体预报对象，特别是重要天气事件的预报效果。目标观测设计与模式同化系统相辅相成，有望成为21世纪数值天气预报准确率再上一个台阶的有效途径。

API 响应特性

现代化的 PHP开发都需要构建 API ，不管它只是为了给 javascript 单页应用提供数据还是作为独立的产品。FSO 提供了一个API响应特性，可用于任何控制器，使公共响应类型简单，无需记住它的 HTTP 状态代码应返回的响应类型。

目录

	使用事例

	处理响应类型

	引用类

使用事例

下面的示例显示了控制器中常见的使用模式。

<?php namespace App\Controllers;

class Users extends \FSO\Controller
{
 use FSO\API\ResponseTrait;

 public function createUser()
 {
 $model = new UserModel();
 $user = $model->save($this->request->getPost());

 // 响应 201 状态码
 return $this->respondCreated();
 }
}

在这个例子中，响应了 201 的HTTP状态码，并使用“创建”的通用状态消息返回。方法存在于最常见的用例中

// 通用响应方式
respond($data, 200);
// 通用错误响应
fail($errors, 400);
// 项目创建响应
respondCreated($data);
// 项目成功删除
respondDeleted($data);
// 客户端未授权
failUnauthorized($description);
// 禁止动作
failForbidden($description);
// 找不到资源
failNotFound($description);
// Data 数据没有验证
failValidationError($description);
// 资源已存在
failResourceExists($description);
// 资源早已被删除
failResourceGone($description);
// 客户端请求数过多
failTooManyRequests($description);

处理响应类型

当您通过以下任何一种方法传递数据时，它们将决定基于数据类型来格式化结果:

	如果 $data 是一个字符串，它将被当作 HTML 发送回客户端。

	如果 $data 是一个数组，它将尝试请求内容类型与客户端进行协商，默认为 JSON。如果没有在 ConfigAPI.php 中配置内容。默认使用``$supportedResponseFormats`` 属性。

需要使用格式化，请修改 Config/Format.php 文件配置。$supportedResponseFormats 包含了一个格式化响应类型列表。默认情况下，系统将会自动判断并响应 XML 和 JSON 格式:

public $supportedResponseFormats = [
 'application/json',
 'application/xml'
];

这是在 Content Negotiation 中使用的数组，以确定返回的响应类型。如果在客户端请求的内容和您支持的内容之间没有匹配，则返回第一个该数组中的格式。

接下来，需要定义用于格式化数据数组的类。这必须是一个完全合格的类名，类名必须实现 FSOAPIFormatterInterface。格式化支持 JSON 和 XML

public $formatters = [
 'application/json' => \FSO\API\JSONFormatter::class,
 'application/xml' => \FSO\API\XMLFormatter::class
];

因此，如果您的请求在 Accept 头中请求 JSON 格式的数据，那么您传递的数据数组就可以通过其中任何一个 respond* 或 fail* 方法将由 FSOAPIJSONFormatter 格式化。由此产生的 JSON 数据将被发送回客户端。

引用类

 匹配状态码。

Note

由于它在活动的响应实例上设置状态码和正文，所以应该一直作为脚本执行中的最终方法。

基准测试类

FSO 提供了两个独立的工具来帮助你对代码进行基准测试，并测试不同的选项：Timer 和 Iterator。Timer 允许你轻松计算脚本执行中两点之间的时间。迭代器允许你设置多个变量并运行这些测试，记录性能和内存统计信息，以帮助你确定哪个版本是最佳的。

Timer类始终处于活动状态，从框架被调用的那一刻开始，直到发送输出到用户之前，才能使整个系统执行的时间非常准确。

目录

	使用定时器

	查看你的基准点

	显示执行时间

	使用迭代器

	创建任务运行

	运行任务

使用定时器

使用Timer，你可以测量执行应用程序的两个时刻之间的时间。这样可以轻松测量应用程序的不同方面的性能。所有测量都是使用 start() 和 stop() 方法完成的。

该 start() 方法采用单个参数：此定时器的名称。你可以使用任何字符串作为计时器的名称。它仅用于你以后参考以了解哪个测量是:

$benchmark = \Config\Services::timer();
$benchmark->start('render view');

	该 stop() 方法将要停止的计时器的名称作为唯一的参数，也是::

	$benchmark->stop(‘render view’);

该名称不区分大小写，但除此之外必须与你在启动计时器时给出的名称相匹配。

或者，你可以使用 全局函数 timer() 来启动和停止定时器:

// Start the timer
timer('render view');
// Stop a running timer,
// if one of this name has been started
timer('render view');

查看你的基准点

当你的应用程序运行时，你设置的所有定时器都将由Timer类收集。它不会自动显示它们。你可以通过调用 getTimers() 方法检索所有的计时器。该方法返回一组基准信息，包括开始，结束和持续时间:

$timers = $benchmark->getTimers();

// Timers =
array(
 'render view' => array(
 'start' => 1234567890,
 'end' => 1345678920,
 'duration' => 15.4315 // number of seconds
)
)

你可以通过传递要显示的小数位数作为唯一参数来更改计算持续时间的精度。默认值为小数点后面的 4 个数字:

$timers = $benchmark->getTimers(6);

计时器会自动显示在 Debub 工具栏中。

显示执行时间

该 getTimers() 方法将为你的项目中的所有计时器提供原始数据，你可以使用 `getElapsedTime()`方法检索单个计时器的持续时间（以秒为单位）。第一个参数是要显示的定时器的名称。第二个是要显示的小数位数。默认为4:

echo timer()->getElapsedTime('render view');
// Displays: 0.0234

使用迭代器

Iterator是一个简单的工具，旨在让你尝试解决方案中的多个变体，以查看速度差异和不同内存使用模式。你可以添加任何数量的 “任务”，以便运行，该类将运行任务数百或数千次以获得更清晰的性能。然后，你的脚本可以检索和使用结果，或显示为HTML表格。

创建任务运行

任务在 Closures 内定义。任务创建的任何输出将被自动丢弃。它们通过 add() 方法添加到 Iterator 类中。第一个参数是您想要引用这个测试的名称;第二个参数是 Closure，它自己本身:

$iterator = new \FSO\Benchmark\Iterator();

// Add a new task
$iterator->add('single_concat', function()
 {
 $str = 'Some basic'.'little'.'string concatenation test.';
 }
);

// Add another task
$iterator->add('double', function($a='little')
 {
 $str = "Some basic {$little} string test.";
 }
);

运行任务

你一旦添加了要运行的任务，你可以使用 run() 方法多次循环任务。默认情况下，它将循环运行 1000 次。这对大多数简单的测试来说可能就足够了，如果你需要运行测试多次，你可以将你希望运行数字作为第一个参数传递值:

// Run the tests 3000 times.
$iterator->run(3000);

一旦运行，它将返回带有测试结果的 HTML 表格。如果你不希望显示结果，可以通过传递第二个参数为 false:

// Don't display the results.
$iterator->run(1000, false);

缓存驱动器

FSO 提供了几种最常用的快速缓存的封装，除了基于文件的缓存， 其他的缓存都需要对服务器进行特殊的配置，如果配置不正确，将会抛出 一个致命错误异常（Fatal Exception）。

目录

	示例代码

	配置缓存

	类参考

	驱动器

	基于文件的缓存

	Memcached 缓存

	WinCache 缓存

	Redis 缓存

	虚拟缓存（Dummy Cache）

示例代码

以下示例代码展示控制器中的常见使用模式。

if (! $foo = cache('foo'))
{
 echo 'Saving to the cache!
';
 $foo = 'foobarbaz!';

 // Save into the cache for 5 minutes
 cache()->save('foo', $foo, 300);
}

echo $foo;

你可以通过 Services 类直接获取缓存引擎的实例:

$cache = \Config\Services::cache();

$foo = $cache->get('foo');

配置缓存

缓存引擎的所有配置都在 application/Config/Cache.php 文件中。在该文件中，以下项目可用。

$handler

$handler 处理器是启动引擎时应用作主处理程序。可用的名称有： dummy, file, memcached, redis, wincache。

$backupHandler

在第一选择 $hanlder 不可用的情况下，这是要加载的下一个缓存处理程序。这通常是 文件 处理程序，因为文件系统始终可用，但可能不适合更复杂的多服务器设置。

$prefix

如果您有多个应用程序使用相同的缓存存储，则可以在此处添加一个前缀到所有键名称的自定义前缀。

$path

file 处理程序使用它来显示应该将缓存文件保存到哪里。

$memcached

这是使用 Memcache(d) 处理程序时将使用的一系列服务器。

$redis

使用 Redis 处理程序时要使用的Redis服务器的设置。

类参考

Note

该 $raw 参数仅由 Memcache 使用，以便允许使用 increment() 和 decrement()。

Note

返回的信息和数据的结构取决于正在使用的适配器。

Note

返回的信息和数据的结构取决于正在使用的适配器。

驱动器

基于文件的缓存

和输出类的缓存不同的是，基于文件的缓存支持只缓存视图的某一部分。使用这个缓存时要注意， 确保对你的应用程序进行基准测试，因为当磁盘 I/O 频繁时可能对缓存有负面影响。

Memcached 缓存

可以在缓存配置文件中指定多个 Memcached 服务器。

关于 Memcached 的更多信息，请参阅 http://php.net/memcached。

WinCache 缓存

在 Windows 下，你还可以使用 WinCache 缓存。

关于 WinCache 的更多信息，请参阅 http://php.net/wincache。

Redis 缓存

Redis 是一个在内存中以键值形式存储数据的缓存，使用 LRU（最近最少使用算法）缓存模式， 要使用它，你需要先安装 Redis 服务器和 phpredis 扩展 [https://github.com/phpredis/phpredis]。

连接 Redis 服务器的配置信息必须保存到 application/config/redis.php 文件中，可用参数有:

$config['host'] = '127.0.0.1';
$config['password'] = NULL;
$config['port'] = 6379;
$config['timeout'] = 0;

有关Redis的更多信息，请参阅 http://redis.io。

虚拟缓存（Dummy Cache）

这是一个永远不会命中的缓存，它不存储数据，但是它允许你在当使用的缓存在你的环境下不被支持时， 仍然保留使用缓存的代码。

CLI Library

FSO’s CLI library makes creating interactive command-line scripts simple, including:

	Prompting the user for more information

	Writing multi-colored text the terminal

	Beeping (be nice!)

	Showing progress bars during long tasks

	Wrapping long text lines to fit the window.

Page Contents

	CLI Library

	Initializing the Class

	Getting Input from the User

	Providing Feedback

Initializing the Class

You do not need to create an instance of the CLI library, since all of it’s methods are static. Instead, you simply
need to ensure your controller can locate it via a use statement above your class:

<?php
use \FSO\CLI\CLI;

class MyController extends \FSO\Controller
{
 . . .
}

The class is automatically initialized when the file is loaded the first time.

Getting Input from the User

Sometimes you need to ask the user for more information. They might not have provided optional command-line
arguments, or the script may have encountered an existing file and needs confirmation before overwriting. This is
handled with the prompt() method.

The most basic use case is to simply wait for the user to press a key:

// Wait for the user to press any key...
CLI::prompt();

You can get a little more specific and provide a question for them to answer by passing the question in
as the first parameter:

$color = CLI::prompt('What is your favorite color?');

You can provide a default answer that will be used if the user just hits enter by passing the default in the
second parameter:

$color = CLI::prompt('What is your favorite color?', 'blue');

Finally, you can restrict the acceptable answers by passing in an array of allowed answers as the second parameter:

$overwrite = CLI::prompt('File exists. Overwrite?', ['y','n']);

Providing Feedback

write()

Several methods are provided for you to provide feedback to your users. This can be as simple as a single status update
or a complex table of information that wraps to the user’s terminal window. At the core of this is the write()
method which takes the string to output as the first parameter:

CLI::write('The rain in Spain falls mainly on the plains.');

You can change the color of the text by passing in a color name as the first parameter:

CLI::write('File created.', 'green');

This could be used to differentiate messages by status, or create ‘headers’ by using a different color. You can
even set background colors by passing the color name in as the third parameter:

CLI::write('File overwritten.', 'light_red', 'dark_gray');

The following colors are available:

	black

	dark_gray

	blue

	dark_blue

	light_blue

	green

	light_green

	cyan

	light_cyan

	red

	light_red

	purple

	light_purple

	light_yellow

	yellow

	light_gray

	white

color()

While the write() command will write a single line to the terminal, ending it with a EOL character, you can
use the color() method to make a string fragment that can be used in the same way, except that it will not force
an EOL after printing. This allows you to create multiple outputs on the same row. Or, more commonly, you can use
it inside of a write() method to create a string of a different color inside:

CLI::write("fileA \t". CLI::color('/path/to/file', 'white'), 'yellow');

This example would write a single line to the window, with fileA in yellow, followed by a tab, and then
/path/to/file in white text.

error()

If you need to output errors, you should use the appropriately named error() method. This writes light-red text
to STDERR, instead of STDOUT, like write() and color() do. This can be useful if you have scripts watching
for errors so they don’t have to sift through all of the information, only the actual error messages. You use it
exactly as you would the write() method:

CLI::error('Cannot write to file: '. $file);

wrap()

This command will take a string, start printing it on the current line, and wrap it to a set length on new lines.
This might be useful when displaying a list of options with descriptions that you want to wrap in the current
window and not go off screen:

CLI::color("task1\t", 'yellow');
CLI::wrap("Some long description goes here that might be longer than the current window.");

By default the string will wrap at the terminal width. Windows currently doesn’t provide a way to determine
the window size, so we default to 80 characters. If you want to restrict the width to something shorter that
you can be pretty sure fits within the window, pass the maximum line-length as the second parameter. This
will break the string at the nearest word barrier so that words are not broken.

// Wrap the text at max 20 characters wide
CLI::wrap($description, 20);

You may find that you want a column on the left of titles, files, or tasks, while you want a column of text
on the right with their descriptions. By default, this will wrap back to the left edge of the window, which
doesn’t allow things to line up in columns. In cases like this, you can pass in a number of spaces to pad
every line after the first line, so that you will have a crisp column edge on the left.

// Determine the maximum length of all titles
// to determine the width of the left column
$maxlen = max(array_map('strlen', $titles));

for ($i=0; $i <= count($titles); $i++)
{
 CLI::write(
 // Display the title on the left of the row
 $title[$i].' '.
 // Wrap the descriptions in a right-hand column
 // with its left side 3 characters wider than
 // the longest item on the left.
 CLI::wrap($descriptions[$i], 40, $maxlen+3)
);
}

// Would create something like this:
task1a Lorem Ipsum is simply dummy
 text of the printing and typesetting
 industry.
task1abc Lorem Ipsum has been the industry's
 standard dummy text ever since the

newLine()

The newLine() method displays a blank line to the user. It does not take any parameters:

CLI::newLine();

clearScreen()

You can clear the current terminal window with the clearScreen() method. In most versions of Windows, this will
simply insert 40 blank lines since Windows doesn’t support this feature. Windows 10 bash integration should change
this:

CLI::clearScreen();

showProgress()

If you have a long-running task that you would like to keep the user updated with the progress, you can use the
showProgress() method which displays something like the following:

[####......] 40% Complete

This block is animated in place for a very nice effect.

To use it, pass in the current step as the first parameter, and the total number of steps as the second parameter.
The percent complete and the length of the display will be determined based on that number. When you are done,
pass false as the first parameter and the progress bar will be removed.

$totalSteps = count($tasks);
$currStep = 1;

foreach ($tasks as $task)
{
 CLI::showProgress($currStep++, $totalSteps);
 $task->run();
}

// Done, so erase it...
CLI::showProgress(false);

Content Negotiation

Content negotiation is a way to determine what type of content to return to the client based on what the client
can handle, and what the server can handle. This can be used to determine whether the client is wanting HTML or JSON
returned, whether the image should be returned as a jpg or png, what type of compression is supported and more. This
is done by analyzing four different headers which can each support multiple value options, each with their own priority.
Trying to match this up manually can be pretty challenging. FSO provides the Negotiator class that
can handle this for you.

Loading the Class

You can load an instance of the class manually through the Service class:

$negotiator = \Config\Services::negotiator();

This will grab the current request instance and automatically inject it into the Negotiator class.

This class does not need to be loaded on it’s own. Instead, it can be accessed through this request’s IncomingRequest
instance. While you cannot access it directly this way, you can easily access all of methods through the negotiate()
method:

$request->negotiate('media', ['foo', 'bar']);

When accessed this way, the first parameter is the type of content you’re trying to find a match for, while the
second is an array of supported values.

Negotiating

In this section we will discuss the 4 types of content that can be negotiated and show how that would look using
both of the methods described above to access the negotiator.

Media

The first aspect to look at is handling ‘media’ negotiations. These are provided by the Accept header and
is one of the most complex headers available. A common example is the client telling the server what format it
wants the data in. This is especially common in API’s. For example, a client might request JSON formatted data
from an API endpoint:

GET /foo HTTP/1.1
Accept: application/json

The server now needs to provide a list of what type of content it can provide. In this example, the API might
be able to return data as raw HTML, JSON, or XML. This list should be provided in order of preference:

$supported = [
 'application/json',
 'text/html',
 'application/xml'
];

$format = $request->negotiate('media', $supported);
// or
$format = $negotiate->media($supported);

In this case, both the client and the server can agree on formatting the data as JSON so ‘json’ is returned from
the negotiate method. By default, if no match is found, the first element in the $supported array would be returned.
In some cases, though, you might need to enforce the format to be a strict match. If you pass true as the
final value, it will return an empty string if no match is found:

$format = $request->negotiate('media', $supported, true);
// or
$format = $negotiate->media($supported, true);

Language

Another common usage is to determine the language the content should be served in. If you are running only a single
language site, this obviously isn’t going to make much difference, but any site that can offer up multiple translations
of content will find this useful, since the browser will typically send the preferred language along in the Accept-Language
header:

GET /foo HTTP/1.1
Accept-Language: fr; q=1.0, en; q=0.5

In this example, the browser would prefer French, with a second choice of English. If your website supports English
and German you would do something like:

$supported = [
 'en',
 'de'
];

$lang = $request->negotiate('language', $supported);
// or
$lang = $negotiate->language($supported);

In this example, ‘en’ would be returned as the current language. If no match is found, it will return the first element
in the $supported array, so that should always be the preferred language.

Encoding

The Accept-Encoding header contains the character sets the client prefers to receive, and is used to
specify the type of compression the client supports:

GET /foo HTTP/1.1
Accept-Encoding: compress, gzip

Your web server will define what types of compression you can use. Some, like Apache, only support gzip:

$type = $request->negotiate('encoding', ['gzip']);
// or
$type = $negotiate->encoding(['gzip']);

See more at Wikipedia [https://en.wikipedia.org/wiki/HTTP_compression].

Character Set

The desired character set is passed through the Accept-Charset header:

GET /foo HTTP/1.1
Accept-Charset: utf-16, utf-8

By default, if no matches are found, utf-8 will be returned:

$charset = $request->negotiate('charset', ['utf-8']);
// or
$charset = $negotiate->charset(['utf-8']);

CURLRequest Class

The CURLRequest class is a lightweight HTTP client based on CURL that allows you to talk to other
web sites and servers. It can be used to get the contents of a Google search, retrieve a web page or image,
or communicate with an API, among many other things.

This class is modelled after the Guzzle HTTP Client [http://docs.guzzlephp.org/en/latest/] library since
it is one of the more widely used libraries. Where possible, the syntax has been kept the same so that if
your application needs something a little more powerful than what this library provides, you will have
to change very little to move over to use Guzzle.

Note

This class requires the cURL Library [http://php.net/manual/en/book.curl.php] to be installed
in your version of PHP. This is a very common library that is typically available but not all hosts
will provide it, so please check with your host to verify if you run into problems.

Loading the Library

The library can be loaded either manually or through the Services class.

To load with the Services class call the curlrequest() method:

$client = \FSO\HTTP\Services::curlrequest();

You can pass in an array of default options as the first parameter to modify how cURL will handle the request.
The options are described later in this document:

$options = [
 'base_uri' => 'http://example.com/api/v1/',
 'timeout' => 3
];
$client = \Config\Services::curlrequest($options);

When creating the class manually, you need to pass a few dependencies in. The first parameter is an
instance of the Config\App class. The second parameter is a URI instance. The third
parameter is a Response object. The fourth parameter is the optional $options array:

$client = new \FSO\HTTP\CURLRequest(
 new \Config\App(),
 new \FSO\HTTP\URI(),
 new \FSO\HTTP\Response(),
 $options
);

Working with the Library

Working with CURL requests is simply a matter of creating the Request and getting a
Response object back. It is meant to handle the communications. After that
you have complete control over how the information is handled.

Making Requests

Most communication is done through the request() method, which fires off the request, and then returns
a Response instance to you. This takes the HTTP method, the url and an array of options as the parameters.

$client = Services::curlrequest();

$response = $client->request('GET', 'https://api.github.com/user', [
 'auth' => ['user', 'pass']
]);

Since the response is an instance of FSO\HTTP\Response you have all of the normal information
available to you:

echo $response->statusCode();
echo $response->body();
echo $response->header('Content-Type');
$language = $response->negotiateLanguage(['en', 'fr']);

While the request() method is the most flexible, you can also use the following shortcut methods. They
each take the URL as the first parameter and an array of options as the second:

* $client->get('http://example.com');
* $client->delete('http://example.com');
* $client->head('http://example.com');
* $client->options('http://example.com');
* $client->patch('http://example.com');
* $client->put('http://example.com');
* $client->post('http://example.com');

Base URI

A base_uri can be set as one of the options during the instantiation of the class. This allows you to
set a base URI, and then make all requests with that client using relative URLs. This is especially handy
when working with APIs:

$client = Services::curlrequest([
 'base_uri' => 'https://example.com/api/v1/'
]);

// GET http:example.com/api/v1/photos
$client->get('photos');

// GET http:example.com/api/v1/photos/13
$client->delete('photos/13');

When a relative URI is provided to the request() method or any of the shortcut methods, it will be combined
with the base_uri according to the rules described by
RFC 2986, section 2 [http://tools.ietf.org/html/rfc3986#section-5.2]. To save you some time, here are some
examples of how the combinations are resolved.

	base_uri

	URI

	Result

	http://foo.com

	/bar

	http://foo.com/bar

	http://foo.com/foo

	/bar

	http://foo.com/bar

	http://foo.com/foo

	bar

	http://foo.com/bar

	http://foo.com/foo/

	bar

	http://foo.com/foo/bar

	http://foo.com

	http://baz.com

	http://baz.com

	http://foo.com/?bar

	bar

	http://foo.com/bar

Using Responses

Each request() call returns a Response object that contains a lot of useful information and some helpful
methods. The most commonly used methods let you determine the response itself.

You can get the status code and reason phrase of the response:

$code = $response->statusCode(); // 200
$reason = $response->reason(); // OK

You can retrieve headers from the response:

// Get a header
echo $response->header('Content-type');

// Get all headers
foreach ($repsonse->headers() as $name => $value)
{
 echo $name .': '. $response->headerLine($name) ."\n";
}

The body can be retrieved using the body() method:

$body = $response->body();

The body is the raw body provided by the remote getServer. If the content type requires formatting, you will need
to ensure that your script handles that:

if (strpos($response->header('content-type'), 'application/json') !== false)
{
 $body = json_decode($body);
}

Request Options

This section describes all of the available options you may pass into the constructor, the request() method,
or any of the shortcut methods.

allow_redirects

By default, cURL will follow all “Location:” headers the remote servers send back. The allow_redirects option
allows you to modify how that works.

If you set the value to false, then it will not follow any redirects at all:

$client->request('GET', 'http://example.com', ['allow_redirects' => false]);

Setting it to true will apply the default settings to the request:

$client->request('GET', 'http://example.com', ['allow_redirects' => true]);

// Sets the following defaults:
'max' => 5, // Maximum number of redirects to follow before stopping
'strict' => true, // Ensure POST requests stay POST requests through redirects
'protocols' => ['http', 'https'] // Restrict redirects to one or more protocols

You can pass in array as the value of the allow_redirects option to specify new settings in place of the defaults:

$client->request('GET', 'http://example.com', ['allow_redirects' => [
 'max' => 10,
 'protocols' => ['https'] // Force HTTPS domains only.
]]);

auth

Allows you to provide Authentication details for HTTP Basic [http://www.ietf.org/rfc/rfc2069.txt] and
Digest [http://www.ietf.org/rfc/rfc2069.txt] and authentication. Your script may have to do extra to support
Digest authentication - this simply passes the username and password along for you. The value must be an
array where the first element is the username, and the second is the password. The third parameter should be
the type of authentication to use, either basic or digest:

$client->request('GET', 'http://example.com', ['auth' => ['username', 'password', 'digest']]);

body

There are two ways to set the body of the request for request types that support them, like PUT, OR POST.
The first way is to use the setBody() method:

$client->setBody($body)
 ->request('put', 'http://example.com');

The second method is by passing a body option in. This is provided to maintain Guzzle API compatibility,
and functions the exact same way as the previous example. The value must be a string:

$client->request('put', 'http://example.com', ['body' => $body]);

cert

To specify the location of a PEM formatted client-side certificate, pass a string with the full path to the
file as the cert option. If a password is required, set the value to an array with the first element
as the path to the certificate, and the second as the password:

$client->request('get', '/', ['cert' => ['/path/getServer.pem', 'password']);

connect_timeout

By default, FSO does not impose a limit for cURL to attempt to connect to a website. If you need to
modify this value, you can do so by passing the amount of time in seconds with the connect_timeout option.
You can pass 0 to wait indefinitely:

$response->request('GET', 'http://example.com', ['connect_timeout' => 0]);

debug

When debug is passed and set to true, this will enable additional debugging to echo to STDOUT during the
script execution. This is done by passing CURLOPT_VERBOSE and echoing the output:

$response->request('GET', 'http://example.com', ['debug' => true]);

You can pass a filename as the value for debug to have the output written to a file:

$response->request('GET', 'http://example.com', ['debug' => '/usr/local/curl_log.txt']);

delay

Allows you to pause a number of milliseconds before sending the request:

// Delay for 2 seconds
$response->request('GET', 'http://example.com', ['delay' => 2000]);

form_params

You can send form data in an application/x-www-form-urlencoded POST request by passing an associative array in
the form_params option. This will set the Content-Type header to application/x-www-form-urlencoded
if it’s not already set:

$client->request('POST', '/post', [
 'form_params' => [
 'foo' => 'bar',
 'baz' => ['hi', 'there']
]
]);

headers

While you can set any headers this request needs by using the setHeader() method, you can also pass an associative
array of headers in as an option. Each key is the name of a header, and each value is a string or array of strings
representing the header field values:

$client->request('get', '/', [
 'headers' => [
 'User-Agent' => 'testing/1.0',
 'Accept' => 'application/json',
 'X-Foo' => ['Bar', 'Baz']
]
]);

If headers are passed into the constructor they are treated as default values that will be overridden later by any
further headers arrays or calls to setHeader().

http_errors

By default, CURLRequest will fail if the HTTP code returned is greater than or equal to 400. You can set
http_errors to false to return the content instead:

$client->request('GET', '/status/500');
 // Will fail verbosely

 $res = $client->request('GET', '/status/500', ['http_errors' => false]);
 echo $res->statusCode();
 // 500

json

The json option is used to easily upload JSON encoded data as the body of a request. A Content-Type header
of application/json is added, overwriting any Content-Type that might be already set. The data provided to
this option can be any value that json_encode() accepts:

$response = $client->request('PUT', '/put', ['json' => ['foo' => 'bar']]);

multipart

When you need to send files and other data via a POST request, you can use the multipart option, along with
the CURLFile Class [http://php.net/manual/en/class.curlfile.php]. The values should be an associative array
of POST data to send. For safer usage, the legacy method of uploading files by prefixing their name with an @
has been disabled. Any files that you want to send must be passed as instances of CURLFile:

$post_data = [
 'foo' => 'bar',
 'userfile' => new CURLFile('/path/to/file.txt')
];

query

You can pass along data to send as query string variables by passing an associative array as the query option:

// Send a GET request to /get?foo=bar
$client->request('GET', '/get', ['query' => ['foo' => 'bar']]);

timeout

By default, cURL functions are allowed to run as long as they take, with no time limit. You can modify this with the timeout
option. The value should be the number of seconds you want the functions to execute for. Use 0 to wait indefinitely:

$response->request('GET', 'http://example.com', ['timeout' => 5]);

verify

This option describes the SSL certificate verification behavior. If the verify option is true, it enables the
SSL certificate verification and uses the default CA bundle provided by the operating system. If set to false it
will disable the certificate verification (this is insecure, and allows man-in-the-middle attacks!). You can set it
to a string that contains the path to a CA bundle to enable verification with a custom certificate. The default value
is true:

// Use the system's CA bundle (this is the default setting)
$client->request('GET', '/', ['verify' => true]);

// Use a custom SSL certificate on disk.
$client->request('GET', '/', ['verify' => '/path/to/cert.pem']);

// Disable validation entirely. (Insecure!)
$client->request('GET', '/', ['verify' => false]);

version

To set the HTTP protocol to use, you can pass a string or float with the version number (typically either 1.0
or 1.1, 2.0 is currently unsupported.):

// Force HTTP/1.0
$client->request('GET', '/', ['version' => 1.0]);

Encryption Service

Important

DO NOT use this or any other encryption library for
user password storage! Passwords must be hashed instead, and you
should do that via PHP’s own Password Hashing extension [http://php.net/password].

The Encryption Service provides two-way symmetric (secret key) data encryption.
The encryption manager will instantiate and/or initialize an
encryption handler to suit your parameters, explained below.

The handlers adapt our simple EncrypterInterface to use an
appropriate PHP cryptographic extension or third party library.
Such extensions may need to be explicitly enabled in your instance of PHP.

The following extensions are currently supported:

	OpenSSL [http://php.net/openssl]

Note

Support for the MCrypt extension has been dropped, as that has
been deprecated as of PHP 7.2.

	Using the Encryption Library

	Default behavior

	Setting your encryption key

	Encryption ciphers

	Encryption modes

	OpenSSL Notes

	Message Length

	Configuring the library

	Supported HMAC authentication algorithms

	Using the Encryption manager directly

	Encrypting and decrypting data

	Class Reference

Using the Encryption Library

Like all services in FSO, it can be loaded via Config\Services:

$encrypter = \Config\Services::encrypter();

Default behavior

By default, the Encryption Library will use the OpenSSL handler, with
the AES-256-CBC cipher,
using your configured key and SHA512 HMAC authentication.

The key you provide is used for
“keyed-hash message authentication” (HMAC), which derives
two separate keys from your configured one:
one for encryption and one for authentication. This is
done via a technique called HMAC-based Key Derivation Function [http://en.wikipedia.org/wiki/HKDF] (HKDF).

Setting your encryption key

An encryption key is a piece of information that controls the
cryptographic process and permits a plain-text string to be encrypted,
and afterwards - decrypted. It is the secret “ingredient” in the whole
process that allows you to be the only one who is able to decrypt data
that you’ve decided to hide from the eyes of the public.
After one key is used to encrypt data, that same key provides the only
means to decrypt it, so not only must you chose one carefully, but you
must not lose it or you will also lose access to the data.

It must be noted that to ensure maximum security, such a key should not
only be as strong as possible, but also often changed. Such behavior
however is rarely practical or possible to implement, and that is why
FSO gives you the ability to configure a single key that is to be
used (almost) every time.

It goes without saying that you should guard your key carefully. Should
someone gain access to your key, the data will be easily decrypted. If
your server is not totally under your control it’s impossible to ensure
key security so you may want to think carefully before using it for
anything that requires high security, like storing credit card numbers.

Your encryption key must be as long as the encryption algorithm in use
allows. For AES-256, that’s 256 bits or 32 bytes (characters) long.
You will find a table below that shows the supported key lengths of
different ciphers.

The key should be as random as possible and it must not be a regular
text string, nor the output of a hashing function, etc. In order to create
a proper key, you can use the Encryption library’s createKey() method

// $key will be assigned a 32-byte (256-bit) random key
$key = Encryption::createKey(32);

The key can be either stored in your application/Config/Encryption.php, or
you can design your own storage mechanism and pass the key dynamically
when encrypting/decrypting.

To save your key to your application/Config/Encryption.php, open the file
and set:

$key = 'YOUR KEY';

You’ll notice that the createKey() method outputs binary data, which
is hard to deal with (i.e. a copy-paste may damage it), so you may use
bin2hex(), hex2bin() or Base64-encoding to work with the key in
a more friendly manner. For example:

// Get a hex-encoded representation of the key:
$encoded = bin2hex($encrypter->createKey(32));

// Put the same value in your config with hex2bin(),
// so that it is still passed as binary to the library:
$key = hex2bin(<your hex-encoded key>);

Encryption ciphers

A cipher is a combination of an algorithm, key length, and encryption mode.
For instance, “AES-256-CBC” refers to the AES algorithm using a 256 bit key and
cipher block chaining (CBC) mode.

Different encryption drivers support different sets of encryption algorithms and often implement
them in different ways. Some algorithms expect specific key lengths, while others support
variable length keys. Each algorithm usually supports several different encryption modes.

Here’s a list of common ciphers:

	Algorithm name

	Key lengths (bits / bytes)

	Supported modes

	AES-128 / Rijndael-128

	128 / 16

	CBC, CTR, CFB, CFB8, OFB, ECB

	AES-192

	192 / 24

	CBC, CTR, CFB, CFB8, OFB, ECB

	AES-256

	256 / 32

	CBC, CTR, CFB, CFB8, OFB, ECB

	Blowfish

	128-448 / 16-56

	CBC, CFB, OFB, ECB

	CAST5 / CAST-128

	88-128 / 11-16

	CBC, CFB, OFB, ECB

	DES

	56 / 7

	CBC, CFB, CFB8, OFB, ECB

	RC4 / ARCFour

	40-2048 / 5-256

	Stream

	TripleDES

	56 / 7, 112 / 14, 168 / 21

	CBC, CFB, CFB8, OFB

Note

Blowfish, CAST5 and RC4 support variable length keys,
although in bit terms that only happens in 8-bit increments.

Even though CAST5 supports key lengths lower than 128 bits
(16 bytes), in fact they will just be zero-padded to the
maximum length, as specified in RFC 2144 [http://tools.ietf.org/rfc/rfc2144.txt].

Encryption modes

Different modes of encryption have different characteristics and serve
different purposes. Some are stronger than others, some are faster
and some offer extra features.
If you are unsure which to use, stick to the CBC mode - it is widely accepted
as strong and secure for general purposes.

	Mode name

	Additional info

	CBC

	Cipher block chaining - a safe default choice

	CFB

	Cipher feedback

	CTR

	Counter mode

	ECB

	Electronic codebook - ignores IV (not recommended).

	OFB

	Output feedback

	Stream

	Not actually a mode, it just says that a stream cipher is being used.

OpenSSL Notes

As noted above, the encryption drivers support different sets of encryption
ciphers. The following examples are supported by OpenSSL:

	Cipher name

	Key lengths (bits / bytes)

	Supported modes

	AES-128

	128 / 16

	CBC, CTR, CFB, CFB8, OFB, ECB, XTS

	AES-192

	192 / 24

	CBC, CTR, CFB, CFB8, OFB, ECB, XTS

	AES-256

	256 / 32

	CBC, CTR, CFB, CFB8, OFB, ECB, XTS

	Blowfish

	128-448 / 16-56

	CBC, CFB, OFB, ECB

	Camellia-128

	128 / 16

	CBC, CFB, CFB8, OFB, ECB

	Camellia-192

	192 / 24

	CBC, CFB, CFB8, OFB, ECB

	Camellia-256

	256 / 32

	CBC, CFB, CFB8, OFB, ECB

	CAST5

	88-128 / 11-16

	CBC, CFB, OFB, ECB

	DES

	56 / 7

	CBC, CFB, CFB8, OFB, ECB

	RC2

	8-1024 / 1-128

	CBC, CFB, OFB, ECB

	RC4

	40-2048 / 5-256

	Stream

	TripleDES

	56 / 7, 112 / 14, 168 / 21

	CBC, CFB, CFB8, OFB

	Seed

	128 / 16

	CBC, CFB, OFB, ECB

Message Length

An encrypted string is usually
longer than the original, plain-text string (depending on the cipher).

This is influenced by the cipher algorithm itself, the initialization vector (IV)
prepended to the
cipher-text and the HMAC authentication message that is also prepended.
Furthermore, the encrypted message is also Base64-encoded so that it is safe
for storage and transmission, regardless of a possible character set in use.

Keep this information in mind when selecting your data storage mechanism.
Cookies, for example, can only hold 4K of information.

Configuring the library

The Encryption library is designed to
use repeatedly the same driver, encryption cipher and key.

As noted in the “Default behavior” section above, this means using an
auto-detected driver (OpenSSL has a higher priority), the AES-256 algorithm
in CBC mode, and your $key value.

Encryption configuration settings are normally set in
application/config/Encryption.php.
Not all settings are supported by all of the drivers

	Option

	Possible values (default in parentheses)

	driver

	Preferred handler (OpenSSL)

	cipher

	Cipher name (AES-256-CBC); see Encryption ciphers)

	key

	Encryption key starter

	digest

	Which HMAC digest algorithm to use (SHA512)

	encoding

	The encoding to apply to encrypted results (base64)

You can over-ride any of those settings by passing your own Config object,
or an associative array of parameters, or even just the driver name, to the Services:

$encrypter = \Config\Services::encrypter($params);

These will replace any same-named settings in Config\Encryption.

Supported HMAC authentication algorithms

For HMAC message authentication, the Encryption library supports
usage of the SHA-2 family of algorithms:

	Algorithm

	Raw length (bytes)

	Hex-encoded length (bytes)

	sha512

	64

	128

	sha384

	48

	96

	sha256

	32

	64

	sha224

	28

	56

Using the Encryption manager directly

Instead of, or in addition to, using the Services described
at the beginning of this page, you can use the encryption manager
directly, to create an Encrypter or to change the settings
of the current one.

$encryption = new EncryptionEncryption();
$encrypter = $encryption->initialize($params);

For example, if you were to change the encryption algorithm and
mode to AES-256 in CTR mode, this is what you should do:

$encryption = new \Encryption\Encryption();
$encrypter = $encryption->initialize([
 'cipher' => 'aes-256-ctr',
 'key' => '<a 32-character random string>'
]);

Note that we only mentioned that you want to change the cipher,
but we also included a key in the example. As previously noted, it is
important that you choose a key with a proper size for the used algorithm.

If you want to change the driver, for instance switching between
Sodium and OpenSSL, you could go through the Services:

// Switch to the Sodium driver
$encrypter= \Config\Services::encrypter(['driver' => 'Sodium']);;
// encrypt data using Sodium

// Switch back to the OpenSSL driver
$encrypter= \Config\Services::encrypter(['driver' => 'OpenSSL']);;
// now encrypt data using OpenSSL

Alternately, you could use the encryption manager directly:

$encryption = new EncryptionEncryption();

// Switch to the Sodium driver
$encrypter= $encryption->initialize([‘driver’ => ‘Sodium’]);;
// encrypt data using Sodium

// Switch back to the OpenSSL driver
$encrypter= $encryption->initialize([‘driver’ => ‘OpenSSL’]);;
// now encrypt data using OpenSSL

Note that it would be easier to save these separately, if both encrypters
were to be needed as part of handling the same request.

$encryption = new EncryptionEncryption();
$encrypter1 = $encryption->initialize([‘driver’ => ‘Sodium’]);;
$encrypter2 = $encryption->initialize([‘driver’ => ‘OpenSSL’]);;

Encrypting and decrypting data

Encrypting and decrypting data with the already configured library
settings is simple - pass the appropriate string to the
encrypt() and/or decrypt() methods:

$plain_text = 'This is a plain-text message!';
$ciphertext = $encrypter->encrypt($plaintext);

// Outputs: This is a plain-text message!
echo $encrypter->decrypt($ciphertext);

And that’s it! The Encryption library will do everything necessary
for the whole process to be cryptographically secure out-of-the-box.
You don’t need to worry about it.

Important

Both methods will return FALSE in case of an error.
While for encrypt() this can only mean incorrect
configuration, you should always check the return value
of decrypt() in production code.

Class Reference

使用文件类

FSO提供了一个文件类,它将提供 SplFileInfo [http://php.net/manual/en/class.splfileinfo.php] class
方法和一些额外的便利方法.这个类是 uploaded files 的基类
和 images.

目录

	获取文件类实例

	利用Spl

	新功能

	移动文件

获取文件类实例

通过传递构造函数中文件的路径来创建新的文件实例。默认情况下,文件不需要存在。但是您可以传递一个附加参数 “true” ,以检查该文件是否存在,并在不存在的情况下抛出 FileNotFoundException() 的异常提示.

$file = new \FSO\Files\File($path);

利用Spl

一旦你有一个实例,你就可以完成 SplFileInfo 类的全部功能,包括:

echo $file->getBasename(); // 获取文件的基本名称

echo $file->getMTime(); // 获取上次修改的时间

echo $file->getRealpath(); // 获取真正的实际路径

echo $file->getPerms(); // 获取文件权限

if ($file->isWritable()) // 向CSV中写入几行数据.
{
 $csv = $file->openFile('w');

 foreach ($rows as $row)
 {
 $csv->fputcsv($row);
 }
}

新功能

除了 SplFileInfo 类中的所有方法之外,还有一些新的方法.

getRandomName()

您可以生成一个加密安全的随机文件名,其中包含当前时间戳, getRandomName()
方法在移动文件时重命名文件很有用:

$newName = $file->getRandomName(); // 例如: 1465965676_385e33f741.jpg

getSize()

返回上传文件的大小(以字节为单位).可以将 ‘kb’ 或 ‘mb’ 作为第一个参数传入方法,
将分别返回千字节和兆字节的结果:

$bytes = $file->getSize(); // 256901

$kilobytes = $file->getSize('kb'); // 250.880

$megabytes = $file->getSize('mb'); // 0.245

getMimeType()

尽可能在确定文件安全的前提下,使用该方法获取文件的类型:

$type = $file->getMimeType();

echo $type; // image/png

guessExtension()

使用 getMimeType() 方法确定文件扩展名时.如果文件类型未知,将返回 null . guessExtension() 比使用 getMimeType() 来获取扩展名功能强一点.可以配置 application/Config/Mimes.php 中的配置文件来获取文件扩展名:

$ext = $file->guessExtension(); // 例如:返回图片类型 'jpg' (没有句点'.')

移动文件

每个文件可以使用 move() 方法移动到新的位置.指定文件的目录作作为
该方法的第一个参数:

$file->move(WRITEPATH.'uploads');

默认情况下,使用原始文件名.您可以通过第二个参数重命名你要移动的文件:

$newName = $file->getRandomName();

$file->move(WRITEPATH.'uploads', $newName);

Image Manipulation Class

FSO’s Image Manipulation class lets you perform the following
actions:

	Image Resizing

	Thumbnail Creation

	Image Cropping

	Image Rotating

	Image Watermarking

The following image libraries are supported: GD/GD2, and ImageMagick.

Contents

	Image Manipulation Class

	Initializing the Class

	Processing an Image

	Processing Methods

	Cropping Images

	Fitting Images

	Flipping Images

	Resizing Images

	Rotating Images

	Adding a Text Watermark

	local

	

Initializing the Class

Like most other classes in FSO, the image class is initialized
in your controller by calling the Services class:

$image = Config\Services::image();

You can pass the alias for the image library you wish to use into the
Service function:

$image = Config\Services::image('imagick');

The available Handlers are as follows:

	gd The GD/GD2 image library

	imagick The ImageMagick library.

If using the ImageMagick library, you must set the path to the library on your
server in application/Config/Images.php.

Note

The ImageMagick handler does NOT require the imagick extension to be
loaded on the server. As long as your script can access the library
and can run exec() on the server, it should work.

Processing an Image

Regardless of the type of processing you would like to perform
(resizing, cropping, rotation, or watermarking), the general process is
identical. You will set some preferences corresponding to the action you
intend to perform, then call one of the available processing functions.
For example, to create an image thumbnail you’ll do this:

$image = Config\Services::image()
 ->withFile('/path/to/image/mypic.jpg')
 ->fit(100, 100, 'center')
 ->save('/path/to/image/mypic_thumb.jpg');

The above code tells the library to look for an image
called mypic.jpg located in the source_image folder, then create a
new image from it that is 100 x 100pixels using the GD2 image_library,
and save it to a new file (the thumb). Since it is using the fit() method,
it will attempt to find the best portion of the image to crop based on the
desired aspect ratio, and then crop and resize the result.

An image can be processed through as many of the available methods as
needed before saving. The original image is left untouched, and a new image
is used and passed through each method, applying the results on top of the
previous results:

$image = Config\Services::image()
 ->withFile('/path/to/image/mypic.jpg')
 ->reorient()
 ->rotate(90)
 ->crop(100, 100, 0, 0)
 ->save('/path/to/image/mypic_thumb.jpg');

This example would take the same image and first fix any mobile phone orientation issues,
rotate the image by 90 degress, and then crop the result into a 100x100 pixel image,
starting at the top left corner. The result would be saved as the thumbnail.

Note

In order for the image class to be allowed to do any
processing, the folder containing the image files must have write
permissions.

Note

Image processing can require a considerable amount of server
memory for some operations. If you are experiencing out of memory errors
while processing images you may need to limit their maximum size, and/or
adjust PHP memory limits.

Processing Methods

There are six available processing methods:

	$image->crop()

	$image->fit()

	$image->flip()

	$image->resize()

	$image->rotate()

	$image->text()

These methods return the class instance so they can be chained together, as shown above.
If they fail they will throw a FSO\Images\ImageException that contains
the error message. A good practice is to catch the exceptions, showing an
error upon failure, like this:

try {
$image = Config\Services::image()
 ->withFile('/path/to/image/mypic.jpg')
 ->fit(100, 100, 'center')
 ->save('/path/to/image/mypic_thumb.jpg');
}
catch (FSO\Images\ImageException $e)
{
 echo $e->getMessage();
}

Note

You can optionally specify the HTML formatting to be applied to
the errors, by submitting the opening/closing tags in the function,
like this:

$this->image_lib->display_errors('<p>', '</p>');

Cropping Images

Images can be cropped so that only a portion of the original image remains. This is often used when creating
thumbnail images that should match a certain size/aspect ratio. This is handled with the crop() method:

crop(int $width = null, int $height = null, int $x = null, int $y = null, bool $maintainRatio = false, string $masterDim = 'auto')

	$width is the desired width of the resulting image, in pixels.

	$height is the desired height of the resulting image, in pixels.

	$x is the number of pixels from the left side of the image to start cropping.

	$y is the number of pixels from the top of the image to start cropping.

	$maintainRatio will, if true, adjust the final dimensions as needed to maintain the image’s original aspect ratio.

	$masterDim specifies which dimension should be left untouched when $maintainRatio is true. Values can be: ‘width’, ‘height’, or ‘auto’.

To take a 50x50 pixel square out of the center of an image, you would need to first calculate the appropriate x and y
offset values:

$info = Services::image('imagick')
 ->withFile('/path/to/image/mypic.jpg')
 ->getFile()
 ->getProperties(true);

$xOffset = ($info['width'] / 2) - 25;
$yOffset = ($info['height'] / 2) - 25;

Services::image('imagick')
 ->withFile('/path/to/image/mypic.jpg')
 ->crop(50, 50, $xOffset, $yOffset)
 ->save('path/to/new/image.jpg');

Fitting Images

The fit() method aims to help simplify cropping a portion of an image in a “smart” way, by doing the following steps:

	Determine the correct portion of the original image to crop in order to maintain the desired aspect ratio.

	Crop the original image.

	Resize to the final dimensions.

fit(int $width, int $height = null, string $position = 'center')

	$width is the desired final width of the image.

	$height is the desired final height of the image.

	$position determines the portion of the image to crop out. Allowed positions: ‘top-left’, ‘top’, ‘top-right’, ‘left’, ‘center’, ‘right’, ‘bottom-left’, ‘bottom’, ‘bottom-right’.

This provides a much simpler way to crop that will always maintain the aspect ratio:

Services::image('imagick')
 ->withFile('/path/to/image/mypic.jpg')
 ->fit(100, 150, 'left')
 ->save('path/to/new/image.jpg');

Flipping Images

Images can be flipped along either their horizontal or vertical axis:

flip(string $dir)

	$dir specifies the axis to flip along. Can be either ‘vertical’ or ‘horizontal’.

Services::image('imagick')
 ->withFile('/path/to/image/mypic.jpg')
 ->flip('horizontal')
 ->save('path/to/new/image.jpg');

Resizing Images

Images can be resized to fit any dimension you require with the resize() method:

resize(int $width, int $height, bool $maintainRatio = false, string $masterDim = 'auto')

	$width is the desired width of the new image in pixels

	$height is the desired height of the new image in pixels

	$maintainRatio determines whether the image is stretched to fit the new dimensions, or the original aspect ratio is maintained.

	$masterDim specifies which axis should have its dimension honored when maintaining ratio. Either ‘width’, ‘height’.

When resizing images you can choose whether to maintain the ratio of the original image, or stretch/squash the new
image to fit the desired dimensions. If $maintainRatio is true, the dimension specified by $masterDim will stay the same,
while the other dimension will be altered to match the original image’s aspect ratio.

Services::image('imagick')
->withFile('/path/to/image/mypic.jpg')
->resize(200, 100, true, 'height')
->save('path/to/new/image.jpg');

Rotating Images

The rotate() method allows you to rotate an image in 90 degree increments:

rotate(float $angle)

	$angle is the number of degrees to rotate. One of ‘90’, ‘180’, ‘270’.

Note

While the $angle parameter accepts a float, it will convert it to an integer during the process.
If the value is any other than the three values listed above, it will throw a FSOImagesImageException.

Adding a Text Watermark

You can overlay a text watermark onto the image very simply with the text() method. This is useful for placing copyright
notices, photogropher names, or simply marking the images as a preview so they won’t be used in other people’s final
products.

text(string $text, array $options = [])

The first parameter is the string of text that you wish to display. The second parameter is an array of options
that allow you to specify how the text should be displayed:

Services::image('imagick')
->withFile('/path/to/image/mypic.jpg')
->text('Copyright 2017 My Photo Co', [
 'color' => '#fff',
 'opacity' => 0.5,
 'withShadow' => true,
 'hAlign' => 'center',
 'vAlign' => 'bottom',
 'fontSize' => 20
])
->save('path/to/new/image.jpg');

The possible options that are recognized are as follows:

	color Text Color (hex number), i.e. #ff0000

	opacity A number between 0 and 1 that represents the opacity of the text.

	withShadow Boolean value whether to display a shadow or not.

	shadowColor Color of the shadow (hex number)

	shadowOffset How many pixels to offset the shadow. Applies to both the vertical and horizontal values.

	hAlign Horizontal alignment: left, center, right

	vAlign Vertical alignment: top, middle, bottom

	hOffset Additional offset on the x axis, in pixels

	vOffset Additional offset on the y axis, in pixels

	fontPath The full server path to the TTF font you wish to use. System font will be used if none is given.

	fontSize The font size to use. When using the GD handler with the system font, valid values are between 1-5.

Note

The ImageMagick driver does not recognize full server path for fontPath. Instead, simply provide the
name of one of the installed system fonts that you wish to use, i.e. Calibri.

IncomingRequest 类

IncomingRequest 类提供了一个客户端（比如 浏览器）HTTP 请求的面向对象封装。
基于它可以访问所有 Request 和 Message 中的方法， 以及以下列出的方法。

目录

	IncomingRequest 类

	获得请求

	判断请求类型

	数据读取

	数据过滤

	获取数据头

	请求地址

	上传文件

	内容协商

获得请求

如果当前控制器继承了 FSO\Controller，则一个 Request 类的实例已被初始化并可作为属性被使用:

class UserController extends FSO\Controller
{
 public function index()
 {
 if ($this->request->isAJAX())
 {
 . . .
 }
 }
}

如果在控制器外使用 Request 对象，可以通过 Services class 获得实例:

$request = \Config\Services::request();

推荐将 Request 对象作为一个依赖注入到当前类中并保存为一个属性:

use FSO\HTTP\RequestInterface;

class SomeClass
{
 protected $request;

 public function __construct(RequestInterface $request)
 {
 $this->request = $request;
 }
}

$someClass = new SomeClass(\Config\Services::request());

判断请求类型

请求有多种来源，包含使用 AJAX 发起和使用 CLI 发起的。可通过 isAJAX() and isCLI() 来检测:

// Check for AJAX request.
if ($request->isAJAX())
{
 . . .
}

// Check for CLI Request
if ($request->isCLI())
{
 . . .
}

你可以检测请求的 HTTP 类型

// Returns 'post'
$method = $request->getMethod();

该方法默认返回类型是小写的字符串 （比如 ‘get’, ‘post’ 等等），你可以通过传递 true 参数来获得大写的返回结果:

// Returns 'GET'
$method = $request->getMethod(true);

还可以通过 isSecure() 方法检测请求是否是 HTTPS:

if (! $request->isSecure())
{
 force_https();
}

数据读取

你可以通过 Request 对象读取 $_SERVER, $_GET, $_POST, $_ENV, $_SESSION 内的信息。
因为输入数据不会自动过滤，只会返回请求时的原始数据。而使用这些方法去替代直接获取数据的（比如 $_POST[‘something’]）主要优点是当参数不存在时会返回 null ，而且你还能做数据过滤。这可以使你很方便的直接使用 数据而不需要先去判断某个参数是否存在。换句话说，一般情况下你以前会这么做:

$something = isset($_POST['foo']) ? $_POST['foo'] : NULL;

而使用 FSO 的内建方法你可以很简单的做到同样的事:

$something = $request->getVar('foo');

因为 getVar() 方法从 $_REQUEST 获得数据，所以使用它可以获得 $_GET, $POST, $_COOKIE 内的数据。虽然这很方便，但是你有时也需要使用一些特定的方法，比如:

* ``$request->getGet()``
* ``$request->getPost()``
* ``$request->getServer()``
* ``$request->getCookie()``

另外，还有一些实用的方法可以同时获取 $_GET 或者 $_POST 的数据，因为有获取顺序的问题，我们提供了以下方法:

* ``$request->getPostGet()`` - 先 $_POST, 后 $_GET
* ``$request->getGetPost()`` - 先 $_GET, 后 $_POST

获取JSON数据

你可以使用 getJSON() 去获取 php://input 传递的 JSON 格式的数据。

Note

因为无法检测来源数据是否具有有效的JSON格式，所以只有当你确认数据来源格式是JSON后才可使用。

$json = $request->getJSON();

默认情况下，这会返回一个 JSON 数据对象。如果你需要一个数据，请传递 true 作为第一个参数。

该方法的第二和第三个参数则分别对应 json_decode [http://php.net/manual/en/function.json-decode.php] 方法的 depth 和 options 参数.

获取原始数据 （获取 Method 为 PUT, PATCH, DELETE 传递的数据）

最后，你可以通过 getRawInput() 去获取 php://input 传递的原始数据。

$data = $request->getRawInput();

这会返回数据并转换为数组。比如:

var_dump($request->getRawInput());

[
 'Param1' => 'Value1',
 'Param2' => 'Value2'
]

数据过滤

为了保证应用程序的安全，必须过滤所有输入的数据。你可以传递过滤类型到方法的最后一个参数里。会调用系统方法 filter_var() 去过滤。具体过滤类型可以参考 PHP 手册里的列表 valid
filter types [http://php.net/manual/en/filter.filters.php].

过滤一个 POST 变量可以这么做:

$email = $request->getVar('email', FILTER_SANITIZE_EMAIL);

以上提到的方法中除了 getJSON() 和 getRawInput() ，都支持给最后一个参数传递类型来实现过滤。

获取数据头

你可以通过 getHeaders() 方法获得请求的数据头，该方法会以数组形式返回所有的数据头信息，数据的键值为数据头名称，值则为一个 FSO\HTTP\Header 的实例:

var_dump($request->getHeaders());

[
 'Host' => FSO\HTTP\Header,
 'Cache-Control' => FSO\HTTP\Header,
 'Accept' => FSO\HTTP\Header,
]

如果你只是想获得某个头的信息，你可以将数据头名称作为参数传递给 getHeader() 方法。数据头名称无视大小写，如果存在则返回指定头信息。如果不存在则返回 null

// 以下这些效果一样
$host = $request->getHeader('host');
$host = $request->getHeader('Host');
$host = $request->getHeader('HOST');

你可以使用 hasHeader() 去判断请求头是否存在:

if ($request->hasHeader('DNT'))
{
 // Don't track something...
}

如果你需要某个头的值并在一行字符串内输出，可以使用 getHeaderLine() 方法:

 // Accept-Encoding: gzip, deflate, sdch
echo 'Accept-Encoding: '.$request->getHeaderLine('accept-encoding');

如果你需要完整头信息，输出包括全部名称和值的字符串，可以使用如下方法做转换:

echo (string)$header;

请求地址

你可以通过访问 $request->uri 属性获取代表当前访问信息的 doc:URI <uri> 对象。通过以下方法获取当前请求的完整访问地址:

$uri = (string)$request->uri;

该对象赋予了你访问全部请求信息的能力:

$uri = $request->uri;

echo $uri->getScheme(); // http
echo $uri->getAuthority(); // snoopy:password@example.com:88
echo $uri->getUserInfo(); // snoopy:password
echo $uri->getHost(); // example.com
echo $uri->getPort(); // 88
echo $uri->getPath(); // /path/to/page
echo $uri->getQuery(); // foo=bar&bar=baz
echo $uri->getSegments(); // ['path', 'to', 'page']
echo $uri->getSegment(1); // 'path'
echo $uri->getTotalSegments(); // 3

上传文件

所有上传文件的信息可以通过 $request->getFiles() 方法获得，该方法会返回一个 FileCollection 实例。这会有助于减少处理文件上传的工作量，以及使用最佳方案去降低安全风险。

$files = $request->getFiles();

// Grab the file by name given in HTML form
if ($files->hasFile('uploadedFile')
{
 $file = $files->getFile('uploadedfile');

 // Generate a new secure name
 $name = $file->getRandomName();

 // Move the file to it's new home
 $file->move('/path/to/dir', $name);

 echo $file->getSize('mb'); // 1.23
 echo $file->getExtension(); // jpg
 echo $file->getType(); // image/jpg
}

你也可以通过HTML中提交的文件名去获取单个上传文件:

$file = $request->getFile('uploadedfile');

内容协商

你可以很轻松的通过 negotiate() 方法来完成信息内容类型的协商:

$language = $request->negotiate('language', ['en-US', 'en-GB', 'fr', 'es-mx']);
$imageType = $request->negotiate('media', ['image/png', 'image/jpg']);
$charset = $request->negotiate('charset', ['UTF-8', 'UTF-16']);
$contentType = $request->negotiate('media', ['text/html', 'text/xml']);
$encoding = $request->negotiate('encoding', ['gzip', 'compress']);

查看 Content Negotiation 获得更多细节。

Note

除了这里列出的，本类还继承了 Request Class 和 Message Class 的方法。

以下方法由父类提供:

* :meth:`FSO\\HTTP\\Request::getIPAddress`
* :meth:`FSO\\HTTP\\Request::validIP`
* :meth:`FSO\\HTTP\\Request::getMethod`
* :meth:`FSO\\HTTP\\Request::getServer`
* :meth:`FSO\\HTTP\\Message::body`
* :meth:`FSO\\HTTP\\Message::setBody`
* :meth:`FSO\\HTTP\\Message::populateHeaders`
* :meth:`FSO\\HTTP\\Message::headers`
* :meth:`FSO\\HTTP\\Message::header`
* :meth:`FSO\\HTTP\\Message::headerLine`
* :meth:`FSO\\HTTP\\Message::setHeader`
* :meth:`FSO\\HTTP\\Message::removeHeader`
* :meth:`FSO\\HTTP\\Message::appendHeader`
* :meth:`FSO\\HTTP\\Message::protocolVersion`
* :meth:`FSO\\HTTP\\Message::setProtocolVersion`
* :meth:`FSO\\HTTP\\Message::negotiateMedia`
* :meth:`FSO\\HTTP\\Message::negotiateCharset`
* :meth:`FSO\\HTTP\\Message::negotiateEncoding`
* :meth:`FSO\\HTTP\\Message::negotiateLanguage`
* :meth:`FSO\\HTTP\\Message::negotiateLanguage`

类库参考

	API 响应特性

	基准测试类

	缓存驱动器

	CLI Library

	Content Negotiation

	CURLRequest Class

	Image Manipulation Class

	Encryption Service

	使用文件类

	IncomingRequest 类

	Localization

	HTTP Messages

	Pagination

	请求类

	HTTP 响应

	Security Class

	Session Library

	Throttler

	Typography

	使用文件上传类

	使用 URI 类

	Validation

Localization

	Working With Locales

	Configuring the Locale

	Locale Detection

	Content Negotiation

	In Routes

	Retrieving the Current Locale

	Language Localization

	Creating Language Files

	Basic Usage

	Replacing Parameters

	Specifying Locale

	Nested Arrays

Working With Locales

FSO provides several tools to help you localize your application for different languages. While full
localization of an application is a complex subject, it’s simple to swap out strings in your application
with different supported languages.

Language strings are stored in the application/Language directory, with a sub-directory for each
supported language:

/application
 /Language
 /en
 app.php
 /fr
 app.php

Important

Locale detection only works for web-based requests that use the IncomingRequest class.
Command-line requests will not have these features.

Configuring the Locale

Every site will have a default language/locale they operate in. This can be set in Config/App.php:

public $defaultLocale = 'en';

The value can be any string that your application uses to manage text strings and other formats. It is
recommended that a [BCP 47](http://www.rfc-editor.org/rfc/bcp/bcp47.txt) language code is used. This results in
language codes like en-US for American English, or fr-FR, for French/France. A more readable introduction
to this can be found on the [W3C’s site](https://www.w3.org/International/articles/language-tags/).

The system is smart enough to fallback to more generic language codes if an exact match
cannot be found. If the locale code was set to en_US and we only have language files setup for en
then those will be used since nothing exists for the more specific en_US. If, however, a language
directory existed at application/Language/en_US then that we be used first.

Locale Detection

There are two methods supported to detect the correct locale during the request. The first is a “set and forget”
method that will automatically perform content negotiation for you to
determine the correct locale to use. The second method allows you to specify a segment in your routes that
will be used to set the locale.

Content Negotiation

You can setup content negotiation to happen automatically by setting two additional settings in Config/App.
The first value tells the Request class that we do want to negotiate a locale, so simply set it to true:

public $negotiateLocale = true;

Once this is enabled, the system will automatically negotiate the correct language based upon an array
of locales that you have defined in $supportLocales. If no match is found between the languages
that you support, and the requested language, the first item in $supportedLocales will be used. In
the following example, the en locale would be used if no match is found:

public $supportedLocales = ['en', 'es', 'fr_FR'];

In Routes

The second method uses a custom placeholder to detect the desired locale and set it on the Request. The
placeholder {locale} can be placed as a segment in your route. If present, the contents of the matching
segment will be your locale:

$routes->get('{locale}/books', 'App\Books::index');

In this example, if the user tried to visit http://example.com/fr/books, then the locale would be
set to fr, assuming it was configured as a valid locale.

Note

If the value doesn’t match a valid locale as defined in the App configuration file, the default
locale will be used in it’s place.

Retrieving the Current Locale

The current locale can always be retrieved from the IncomingRequest object, through the getLocale() method.
If your controller is extending FSO\Controller, this will be available through $this->request:

namespace App\Controllers;

class UserController extends \FSO\Controller
{
 public function index()
 {
 $locale = $this->request->getLocale();
 }
}

Alternatively, you can use the Services class to retrieve the current request:

$locale = service('request')->getLocale();

Language Localization

Creating Language Files

Language do not have any specific naming convention that are required. The file should be named logically to
describe the type of content it holds. For example, let’s say you want to create a file containing error messages.
You might name it simply: Errors.php.

Within the file you would return an array, where each element in the array has a language key and the string to return:

'language_key' => 'The actual message to be shown.'

Note

It’s good practice to use a common prefix for all messages in a given file to avoid collisions with
similarly named items in other files. For example, if you are creating error messages you might prefix them
with error_

return [
 'errorEmailMissing' => 'You must submit an email address',
 'errorURLMissing' => 'You must submit a URL',
 'errorUsernameMissing' => 'You must submit a username',
];

Basic Usage

You can use the lang() helper function to retrieve text from any of the language files, by passing the
filename and the language key as the first paremeter, separated by a period (.). For example, to load the
errorEmailMissing string from the Errors language file, you would do the following:

echo lang('Errors.errorEmailMissing');

If the requested language key doesn’t exist in the file for the current locale, the string will be passed
back, unchanged. In this example, it would return ‘Errors.errorEmailMissing’ if it didn’t exist.

Replacing Parameters

Note

The following functions all require the intl [http://php.net/manual/en/book.intl.php] extension to
be loaded on your system in order to work. If the extension is not loaded, no replacement will be attempted.
A great overview can be found over at Sitepoint [https://www.sitepoint.com/localization-demystified-understanding-php-intl/].

You can pass an array of values to replace placeholders in the language string as the second parameter to the
lang() function. This allows for very simple number translations and formatting:

// The language file, Tests.php:
return [
 "apples" => "I have {0, number} apples.",
 "men" => "I have {1, number} men out-performed the remaining {0, number}",
 "namedApples" => "I have {number_apples, number, integer} apples.",
];

// Displays "I have 3 apples."
echo lang('Tests.apples', [3]);

The first item in the placeholder corresponds to the index of the item in the array, if it’s numerical:

// Displays "The top 23 men out-performed the remaining 20"
echo lang('Tests.men', [20, 23]);

You can also use named keys to make it easier to keep things straight, if you’d like:

// Displays "I have 3 apples."
echo lang("Tests.namedApples", ['number_apples' => 3]);

Obviously, you can do more than just number replacement. According to the
official ICU docs [http://icu-project.org/apiref/icu4c/classMessageFormat.html#details] for the underlying
library, the following types of data can be replaced:

	numbers - integer, currency, percent

	dates - short, medium, long, full

	time - short, medium, long, full

	spellout - spells out numbers (i.e. 34 becomes thirty-four)

	ordinal

	duration

Here are a few examples:

// The language file, Tests.php
return [
 'shortTime' => 'The time is now {0, time, short}.',
 'mediumTime' => 'The time is now {0, time, medium}.',
 'longTime' => 'The time is now {0, time, long}.',
 'fullTime' => 'The time is now {0, time, full}.',
 'shortDate' => 'The date is now {0, date, short}.',
 'mediumDate' => 'The date is now {0, date, medium}.',
 'longDate' => 'The date is now {0, date, long}.',
 'fullDate' => 'The date is now {0, date, full}.',
 'spelledOut' => '34 is {0, spellout}',
 'ordinal' => 'The ordinal is {0, ordinal}',
 'duration' => 'It has been {0, duration}',
];

// Displays "The time is now 11:18 PM"
echo lang('Tests.shortTime', [time()]);
// Displays "The time is now 11:18:50 PM"
echo lang('Tests.mediumTime', [time()]);
// Displays "The time is now 11:19:09 PM CDT"
echo lang('Tests.longTime', [time()]);
// Displays "The time is now 11:19:26 PM Central Daylight Time"
echo lang('Tests.fullTime', [time()]);

// Displays "The date is now 8/14/16"
echo lang('Tests.shortDate', [time()]);
// Displays "The date is now Aug 14, 2016"
echo lang('Tests.mediumDate', [time()]);
// Displays "The date is now August 14, 2016"
echo lang('Tests.longDate', [time()]);
// Displays "The date is now Sunday, August 14, 2016"
echo lang('Tests.fullDate', [time()]);

// Displays "34 is thirty-four"
echo lang('Tests.spelledOut', [34]);

// Displays "It has been 408,676:24:35"
echo lang('Tests.ordinal', [time()]);

You should be sure to read up on the MessageFormatter class and the underlying ICU formatting to get a better
idea on what capabilities it has, like permorming conditional replacement, pluralization, and more. Both of the links provided
earlier will give you an excellent idea as to the options available.

Specifying Locale

To specify a different locale to be used when replacing parameters, you can pass the locale in as the
third parameter to the lang() method.

// Displays "The time is now 23:21:28 GMT-5"
echo lang('Test.longTime', [time()], 'ru_RU');

// Displays "£7.41"
echo lang('{price, number, currency}', ['price' => 7.41], 'en_GB');
// Displays "$7.41"
echo lang('{price, number, currency}', ['price' => 7.41], 'en_US');

Nested Arrays

Language files also allow nested arrays to make working with lists, etc… easier.

// Language/en/Fruit.php

return [
 'list' => [
 'Apples',
 'Bananas',
 'Grapes',
 'Lemons',
 'Oranges',
 'Strawberries'
]
];

// Displays "Apples, Bananas, Grapes, Lemons, Oranges, Strawberries"
echo implode(', ', lang('Fruit.list'));

HTTP Messages

The Message class provides an interface to the portions of an HTTP message that are common to both
requests and responses, including the message body, protocol version, utilities for working with
the headers, and methods for handling content negotiation.

This class is the parent class that both the Request Class and the
Response Class extend from. As such, some methods, such as the content
negotiation methods, may apply only to a request or response, and not the other one, but they have
been included here to keep the header methods together.

What is Content Negotiation?

At it’s heart Content Negotiation is simply a part of the HTTP specification that allows a single
resource to serve more than one type of content, allowing the clients to request the type of
data that works best for them.

A classic example of this is a browser than cannot display PNG files can request only GIF or
JPEG images. When the getServer receives the request, it looks at the available file types the client
is requesting and selects the best match from the image formats that it supports, in this case
likely choosing a JPEG image to return.

This same negotiation can happen with four types of data:

	Media/Document Type - this could be image format, or HTML vs. XML or JSON.

	Character Set - The character set the returned document should be set in. Typically is UTF-8.

	Document Encoding - Typically the type of compression used on the results.

	Document Language - For sites that support multiple languages, this helps determine which to return.

Class Reference

Pagination

FSO provides a very simple, but flexible pagination library that is simple to theme, works with the model,
and capable of supporting multiple paginators on a single page.

Loading the Library

Like all services in FSO, it can be loaded via Config\Services, though you usually will not need
to load it manually:

$pager = \Config\Services::pager();

Paginating Database Results

In most cases, you will be using the Pager library in order to paginate results that you retrieve from the database.
When using the Model class, you can use its built-in paginate() method to automatically
retrieve the current batch of results, as well as setup the Pager library so it’s ready to use in your controllers.
It even reads the current page it should display from the current URL via a page=X query variable.

To provide a paginated list of users in your application, your controller’s method would look something like:

class UserController extends Controller
{
 public function index()
 {
 $model = new \App\Models\UserModel();

 $data = [
 'users' => $model->paginate(10),
 'pager' => $model->pager
];

 echo view('users/index', $data);
 }
}

In this example, we first create a new instance of our UserModel. Then we populate the data to sent to the view.
The first element is the results from the database, users, which is retrieved for the correct page, returning
10 users per page. The second item that must be sent to the view is the Pager instance itself. As a convenience,
the Model will hold on to the instance it used and store it in the public class variable, $pager. So, we grab
that and assign it to the $pager variable in the view.

Within the view, we then need to tell it where to display the resulting links:

<?= $pager->links() ?>

And that’s all it takes. The Pager class will render a series of links that are compatible with the Boostrap CSS
framework by default. It will have First and Last page links, as well as Next and Previous links for any pages more
than two pages on either side of the current page.

If you prefer a simpler output, you can use the simpleLinks() method, which only uses “Older” and “Newer” links,
instead of the details pagination links:

<?= $pager->simpleLinks() ?>

Behind the scenes, the library loads a view file that determines how the links are formatted, making it simple to
modify to your needs. See below for details on how to completely customize the output.

Paginating Multiple Results

If you need to provide links from two different result sets, you can pass group names to most of the pagination
methods to keep the data separate:

// In the Controller
public function index()
{
 $userModel = new \App\Models\UserModel();
 $pageModel = new \App\Models\PageModel();

 $data = [
 'users' => $userModel->paginate(10, 'group1'),
 'pages' => $pageModel->paginate(15, 'group2'),
 'pager' => $userModel->pager
];

 echo view('users/index', $data);
}

// In the views:
<?= $pager->links('group1') ?>
<?= $pager->simpleLinks('group2') ?>

Manual Pagination

You may find times where you just need to create pagination based on known data. You can create links manually
with the makeLinks() method, which takes the current page, the amount of results per page, and
the total number of items as the first, second, and third parameters, respectively:

<?= $pager->makeLinks($page, $perPage, $total) ?>

This will, by default, display the links in the normal manner, as a series of links, but you can change the display
template used by passing in the name of the template as the fourth parameter. More details can be found in the following
sections.

<?= $pager->makeLinks($page, $perPage, $total, 'template_name') ?>

Customizing the Links

View Configuration

When the links are rendered out to the page, they use a view file to describe the HTML. You can easily change the view
that is used by editing application/Config/Pager.php:

public $templates = [
 'default_full' => 'FSO\Pager\Views\default_full',
 'default_simple' => 'FSO\Pager\Views\default_simple'
];

This setting stores the alias and namespaced view paths for the view that
should be used. The default_full and default_simple views are used for the links() and simpleLinks()
methods, respectively. To change the way those are displayed application-wide, you could assign a new view here.

For example, say you create a new view file that works with the Foundation CSS framework, instead of Bootstrap, and
you place that file at application/Views/Pagers/foundation_full.php. Since the application directory is
namespaced as App, and all directories underneath it map directly to segments of the namespace, you can locate
the view file through it’s namespace:

'default_full' => 'App\Views\Pagers\foundation_full',

Since it is under the standard application/Views directory, though, you do not need to namespace it since the
view() method will locate. In that case, you can simple give the sub-directory and file name:

'default_full' => 'Pagers/foundation_full',

Once you have created the view and set it in the configuration, it will automatically be used. You don’t have to
just replace the existing templates. You can create as many additional templates as you need in the configuration
file. A common situation would be needing different styles for the frontend and the backend of your application.

public $templates = [
 'default_full' => 'FSO\Pager\Views\default_full',
 'default_simple' => 'FSO\Pager\Views\default_simple',
 'front_full' => 'App\Views\Pagers\foundation_full',
];

Once configured, you can specify it as a the last parameter in the links(), simpleLinks(), and makeLinks()
methods:

<?= $pager->links('group1', 'front_full') ?>
<?= $pager->simpleLinks('group2', 'front_full') ?>
<?= $pager->makeLinks($page, $perPage, $total, 'front_full') ?>

Creating the View

When you create a new view, you only need to create the code that is needed for creating the pagination links themselves.
You should never create unneccessary wrapping divs since it might be used in multiple places and you only limit their
usefullness. It is easiest to demonstrate creating a new view by showing you the existing default_full template:

<?php $pager->setSurroundCount(2) ?>

<nav aria-label="Page navigation">
 <ul class="pagination">
 <?php if ($pager->hasPrevious()) : ?>

 <a href="<?= $pager->getFirst() ?>" aria-label="First">
 First

 <a href="<?= $pager->getPrevious() ?>" aria-label="Previous">
 «

 <?php endif ?>

 <?php foreach ($pager->links() as $link) : ?>
 <li <?= $link['active'] ? 'class="active"' : '' ?>>
 <a href="<?= $link['uri'] ?>">
 <?= $link['title'] ?>

 <?php endforeach ?>

 <?php if ($pager->hasNext()) : ?>

 <a href="<?= $pager->getNext() ?>" aria-label="Previous">
 »

 <a href="<?= $pager->getLast() ?>" aria-label="Last">
 Last

 <?php endif ?>

</nav>

setSurroundCount()

In the first line, the setSurroundCount() method specifies that we want to show two links to either side of
the current page link. The only parameter that it accepts is the number of links to show.

hasPrevious()
hasNext()

These methods return a boolean true if it has more links than can be displayed on either side of the current page,
based on the value passed to setSurroundCount. For example, let’s say we have 20 pages of data. The current
page is page 3. If the surround count is 2, then the following links would show up in the list: 1, 2, 3, 4, and 5.
Since the first link displayed is page one, hasPrevious() would return false since there is no page zero. However,
hasNext() would return true since there are 15 additional pages of results after page five.

getPrevious()
getNext()

These methods return the URL for the previous or next pages of results on either side of the numbered links. See the
previous paragraph for a full explanation.

getFirst()
getLast()

Much like getPrevious() and getNext(), these methods return links to the first and last pages in the
result set.

links()

Returns an array of data about all of the numbered links. Each link’s array contains the uri for the link, the
title, which is just the number, and a boolean that tells whether the link is the current/active link or not:

$link = [
 'active' => false,
 'uri' => 'http://example.com/foo?page=2',
 'title' => 1
];

请求类

请求类是 HTTP 请求的面向对象表现形式。这意味着它可以用于传入请求，例如来自浏览器的请求，以及将请求从应用程序发到到第三方应用的传出请求。

这个类提供了它们需要的共同的功能，但是这两种情况都有自定义的类，它们继承请求类，然后添加特定的功能。

从 传入请求类 和 CURL请求类 了解更多信息。

类参考

HTTP 响应

响应类扩展了 HTTP 消息类 ，只适用于服务器返回响应给调用它的客户端。

Page Contents

	HTTP 响应

	使用响应类

	设置输出内容

	设置 HTTP 头

	文件下载

	HTTP 缓存

	内容安全策略(CSP)

	启用CSP

	运行时配置

	内联内容

	类参考

使用响应类

响应类被实例化并传递到控制器。可以通过 $this->response 访问它。很多时候不需要直接使用它，因为 FSO 会为你发送标头和正文。
如果一切正常，页面会成功创建被请求的内容。
但是当出现问题时，或者当你需要发送指定的状态码，或者想要使用强大的 HTTP 缓存，可以立即使用它。

设置输出内容

当需要直接设置脚本的输出内容时，不要依赖FSO来自动获取它，应该手动调用 setBody 方法。通常用于设置响应的状态码。

$this->response->setStatusCode(404)
 ->setBody($body);

响应中的原因短语 (‘OK’, ‘Created’, ‘Moved Permenantly’) 将被自动添加，但也可以通过为 setStatusCode() 方法设置第二个参数来添加自定义的原因。

$this->response->setStatusCode(404, 'Nope. Not here.');

设置 HTTP 头

通常，你需要为响应设置 HTTP 头。响应类通过 setHeader() 方法简化了这个操作。

setHeader() 方法的第一个参数是 HTTP 头的名称，第二个参数是值，它可以是字符串或值的数组，当发送到客户端时将被正确组合。

使用这些函数而不是使用PHP原生函数，可以确保不会过早发送 HTTP 头导致错误，并使测试成为可能。

$response->setHeader('Location', 'http://example.com')
 ->setHeader('WWW-Authenticate', 'Negotiate');

如果 HTTP 头已经存在并且可以有多个值，可以使用 appendHeader() prependHeader() 方法分别将值添加到值列表的结尾或开头。

第一个参数是 HTTP 头的名称，第二个参数是添加到结尾或开头的值。

$response->setHeader('Cache-Control', 'no-cache')
 ->appendHeader('Cache-Control', 'must-revalidate');

HTTP 头可以用 removeHeader() 方法移除，此方法只接受 HTTP 头的名称作为唯一参数。并且不区分大小写。

$response->removeHeader('Location');

文件下载

响应类提供了一个简单地将文件发送给客户端的方法，提示浏览器下载文件。会设置适当的标题来实现。

第一个参数是 下载文件的名称，第二个参数是文件内容。

如果将第二个参数设为 NULL， 并且 $filename 是一个已存在的，可读的文件路径，那么将会使用这个路径下的内容作为文件内容。

如果将第三个参数设置为布尔值 TRUE，那么实际的文件的 MIME 类型(基于文件扩展名)将被发送，这样当浏览器拥有该类型的处理程序 - 可以使用到它。

示例:

$data = 'Here is some text!';
$name = 'mytext.txt';
$response->download($name, $data);

如果要从服务器下载现有的文件，你需要这样做:

// photo.jpg 的内容将被自动读取
$response->download('/path/to/photo.jpg', NULL);

HTTP 缓存

内置的 HTTP 规范是帮助客户端(通常是web浏览器)缓存结果的工具。

正确使用它，可以为应用程序带来巨大的性能提升，因为它会告诉客户端不需要联系服务器，因为没有任何改变。你不会比这更快。

这些都通过 Cache-Control 和 Etag 头来处理。本指南并不适合完整介绍缓存的功能，但你可以在 Google Developers [https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/http-caching] 和 Mobify Blog [https://www.mobify.com/blog/beginners-guide-to-http-cache-headers/] 中了解更多。

默认情况下，所有通过 FSO 发送的响应都是关闭了 HTTP 缓存的。
但在实际应用中，情况千变万化，无法简单的设置一个合适的默认值，除非关闭它，
不过，可以通过 setCache() 方法设置你需要的缓存的值。这非常简单

$options = [
 'max-age' => 300,
 's-maxage' => 900,
 'etag' => 'abcde',
];
$this->response->setCache($options);

$options 是一个简单的键值对数组，它们被分配给 Cache-Control 头。你也可以根据具体情况自由设定所有选项。

虽然大多数选项都应用于 Cache-Control 头，但它会智能地处理 etag 和 last-modified 选项到适当的头。

内容安全策略(CSP)

对XSS攻击的最佳保护方式之一是在站点上实施内容安全策略。

这迫使你将从你网站的 HTML 中载入的每一个内容来源列入白名单中，包括图片，样式表，JavaScript文件等。浏览器将拒绝白名单外的的内容。这个白名单在响应的 Content-Security-Policy 标头中创建，并且有多种配置方式。

这听起来很复杂，在某些网站上肯定会有挑战性。对于很多简单的网站，所有的内容由相同的域名(http://example.com)提供，整合起来非常简单。

由于这是一个复杂的主题，本用户指南将不会覆盖所有细节。有关更多信息，你应该访问以下网站:

	Content Security Policy main site [http://content-security-policy.com/]

	W3C Specification [https://www.w3.org/TR/CSP]

	Introduction at HTML5Rocks [http://www.html5rocks.com/en/tutorials/security/content-security-policy/]

	Article at SitePoint [https://www.sitepoint.com/improving-web-security-with-the-content-security-policy/]

启用CSP

默认情况下，CSP策略是禁用的。想要在应用程序中启用CSP，修改 application/Config/App.php 中的 CSPEnabled 的值

public $CSPEnabled = true;

当开启后，响应对象将包含一个 FSO\HTTP\ContentSecurityPolicy 的实例。

在 application/Config/ContentSecurityPolicy.php 中设置的值应用于这个实例，如果在运行时没有修改，那么将会发送正确的格式化后的标题，并且完成所有操作。

运行时配置

如果你的应用需要在运行时进行更改，则可以访问 $response->CSP 实例。该类拥有很多方法，可以很清晰地映射到你需要设置的 header 头

$reportOnly = true;

$response->CSP->reportOnly($reportOnly);
$response->CSP->setBaseURI('example.com', true);
$response->CSP->setDefaultSrc('cdn.example.com', $reportOnly);
$response->CSP->setReportURI('http://example.com/csp/reports');
$response->CSP->setSandbox(true, ['allow-forms', 'allow-scripts']);
$response->CSP->upgradeInsecureRequests(true);
$response->CSP->addChildSrc('https://youtube.com', $reportOnly);
$response->CSP->addConnectSrc('https://*.facebook.com', $reportOnly);
$response->CSP->addFontSrc('fonts.example.com', $reportOnly);
$response->CSP->addFormAction('self', $reportOnly);
$response->CSP->addFrameAncestor('none', $reportOnly);
$response->CSP->addImageSrc('cdn.example.com', $reportOnly);
$response->CSP->addMediaSrc('cdn.example.com', $reportOnly);
$response->CSP->addObjectSrc('cdn.example.com', $reportOnly);
$response->CSP->addPluginType('application/pdf', $reportOnly);
$response->CSP->addScriptSrc('scripts.example.com', $reportOnly);
$response->CSP->addStyleSrc('css.example.com', $reportOnly);

内联内容

可以设置一个网站不保护自己的页面上的内联脚本和样式，因为这可能是用户生成的内容的结果。
为了防止这种情况，CSP 允许你再 <style> 和 <script> 标记中指定一个随机数，并将这些值添加到响应头中。
这样处理很痛苦，但是却是最安全的。
为了简单起见，你可以在代码中包含 {csp-style-nonce} 或 {csp-script-nonce} 占位符，程序将会自动为你处理

// Original
<script {csp-script-nonce}>
 console.log("Script won't run as it doesn't contain a nonce attribute");
</script>

// Becomes
<script nonce="Eskdikejidojdk978Ad8jf">
 console.log("Script won't run as it doesn't contain a nonce attribute");
</script>

// OR
<style {csp-style-nonce}>
 . . .
</style>

类参考

Note

除了这里列出的方法，响应类还继承了 消息类 的方法。

父类提供的可用的方法:

	FSO\HTTP\Message::body()

	FSO\HTTP\Message::setBody()

	FSO\HTTP\Message::populateHeaders()

	FSO\HTTP\Message::headers()

	FSO\HTTP\Message::header()

	FSO\HTTP\Message::headerLine()

	FSO\HTTP\Message::setHeader()

	FSO\HTTP\Message::removeHeader()

	FSO\HTTP\Message::appendHeader()

	FSO\HTTP\Message::protocolVersion()

	FSO\HTTP\Message::setProtocolVersion()

	FSO\HTTP\Message::negotiateMedia()

	FSO\HTTP\Message::negotiateCharset()

	FSO\HTTP\Message::negotiateEncoding()

	FSO\HTTP\Message::negotiateLanguage()

	FSO\HTTP\Message::negotiateLanguage()

Security Class

The Security Class contains methods that help protect your site against Cross-Site Request Forgery attacks.

Page Contents

	Loading the Library

	Cross-site request forgery (CSRF)

	Other Helpful Methods

Loading the Library

If your only interest in loading the library is to handle CSRF protection, then you will never need to load it,
as it is ran as filter and has no manual interaction.

If you find a case where you do need direct access, though, you may load it through the Services file:

$security = \Config\Services::security();

Cross-site request forgery (CSRF)

You can enable CSRF protection by altering your application/Config/Filters.php
and enabling the csrf filter globally:

public $globals = [
 'before' => [
 'csrf'
]
];

Select URIs can be whitelisted from CSRF protection (for example API
endpoints expecting externally POSTed content). You can add these URIs
by adding them as exceptions in the filter:

public $globals = [
 'before' => [
 'csrf' => ['except' => ['api/record/save']]
]
];

Regular expressions are also supported (case-insensitive):

public $globals = [
 'before' => [
 'csrf' => ['except' => ['api/record/[0-9]+']]
]
];

If you use the form helper, then
form_open() will automatically insert a hidden csrf field in
your forms. If not, then you can use the always available csrf_token()
and csrf_hash() functions

<input type="hidden" name="<?= csrf_token() ?>" value="<?= csrf_hash() ?>" />

Additionally, you can use the csrf_field() method to generate this
hidden input field for you:

// Generates: <input type="hidden" name="{csrf_token}" value="{csrf_hash}" />
<?= csrf_field() ?>

Tokens may be either regenerated on every submission (default) or
kept the same throughout the life of the CSRF cookie. The default
regeneration of tokens provides stricter security, but may result
in usability concerns as other tokens become invalid (back/forward
navigation, multiple tabs/windows, asynchronous actions, etc). You
may alter this behavior by editing the following config parameter

public $CSRFRegenerate = true;

Other Helpful Methods

You will never need to use most of the methods in the Security class directly. The following are methods that
you might find helpful that are not related to the CSRF protection.

sanitizeFilename()

Tries to sanitize filenames in order to prevent directory traversal attempts and other security threats, which is
particularly useful for files that were supplied via user input. The first parameter is the path to sanitize.

If it is acceptable for the user input to include relative paths, e.g. file/in/some/approved/folder.txt, you can set
the second optional parameter, $relative_path to true.

$path = $security->sanitizeFilename($request->getVar('filepath'));

Session Library

The Session class permits you maintain a user’s “state” and track their
activity while they browse your site.

FSO comes with a few session storage drivers:

	files (default; file-system based)

	database

	redis

	memcached

Page Contents

	Using the Session Class

	Initializing a Session

	How do Sessions work?

	A note about concurrency

	What is Session Data?

	Retrieving Session Data

	Adding Session Data

	Removing Session Data

	Flashdata

	Tempdata

	Destroying a Session

	Accessing session metadata

	Session Preferences

	Session Drivers

	Files Driver

	Bonus Tip

	Database Driver

	Redis Driver

	Memcached Driver

	Bonus Tip

Using the Session Class

Initializing a Session

Sessions will typically run globally with each page load, so the Session
class should be magically initialized.

To access and initialize the session:

$session = \Config\Services::session($config);
$session->start();

The $config parameter is optional - your application configuration.
If not provided, the services register will instantiate your default
one.

Once loaded, the Sessions library object will be available using:

$session

Alternatively, you can use the helper function that will use the default
configuration options. This version is a little friendlier to read,
but does not take any configuration options.

$session = session()->start();

How do Sessions work?

When a page is loaded, the session class will check to see if a valid
session cookie is sent by the user’s browser. If a sessions cookie does
not exist (or if it doesn’t match one stored on the server or has
expired) a new session will be created and saved.

If a valid session does exist, its information will be updated. With each
update, the session ID may be regenerated if configured to do so.

It’s important for you to understand that once initialized, the Session
class runs automatically. There is nothing you need to do to cause the
above behavior to happen. You can, as you’ll see below, work with session
data, but the process of reading, writing, and updating a session is
automatic.

Note

Under CLI, the Session library will automatically halt itself,
as this is a concept based entirely on the HTTP protocol.

A note about concurrency

Unless you’re developing a website with heavy AJAX usage, you can skip this
section. If you are, however, and if you’re experiencing performance
issues, then this note is exactly what you’re looking for.

Sessions in previous versions of FSO didn’t implement locking,
which meant that two HTTP requests using the same session could run exactly
at the same time. To use a more appropriate technical term - requests were
non-blocking.

However, non-blocking requests in the context of sessions also means
unsafe, because modifications to session data (or session ID regeneration)
in one request can interfere with the execution of a second, concurrent
request. This detail was at the root of many issues and the main reason why
FSO 3.0 has a completely re-written Session library.

Why are we telling you this? Because it is likely that after trying to
find the reason for your performance issues, you may conclude that locking
is the issue and therefore look into how to remove the locks …

DO NOT DO THAT! Removing locks would be wrong and it will cause you
more problems!

Locking is not the issue, it is a solution. Your issue is that you still
have the session open, while you’ve already processed it and therefore no
longer need it. So, what you need is to close the session for the
current request after you no longer need it.

$session->destroy();

What is Session Data?

Session data is simply an array associated with a particular session ID
(cookie).

If you’ve used sessions in PHP before, you should be familiar with PHP’s
$_SESSION superglobal [http://php.net/manual/en/reserved.variables.session.php]
(if not, please read the content on that link).

FSO gives access to its session data through the same means, as it
uses the session handlers’ mechanism provided by PHP. Using session data is
as simple as manipulating (read, set and unset values) the $_SESSION
array.

In addition, FSO also provides 2 special types of session data
that are further explained below: flashdata and tempdata.

Retrieving Session Data

Any piece of information from the session array is available through the
$_SESSION superglobal:

$_SESSION['item']

Or through the conventional accessor method:

$session->get('item');

Or through the magic getter:

$session->item

Or even through the session helper method:

session('item');

Where item is the array key corresponding to the item you wish to fetch.
For example, to assign a previously stored ‘name’ item to the $name
variable, you will do this:

$name = $_SESSION['name'];

// or:

$name = $session->name

// or:

$name = $session->get('name');

Note

The get() method returns NULL if the item you are trying
to access does not exist.

If you want to retrieve all of the existing userdata, you can simply
omit the item key (magic getter only works for single property values):

$_SESSION

// or:

$session->get();

Adding Session Data

Let’s say a particular user logs into your site. Once authenticated, you
could add their username and e-mail address to the session, making that
data globally available to you without having to run a database query when
you need it.

You can simply assign data to the $_SESSION array, as with any other
variable. Or as a property of $session.

	userdata method is deprecated.

	That however passing an array containing your new sessiondata to the

set() method:

$session->set($array);

Where $array is an associative array containing your new data. Here’s
an example:

$newdata = array(
 'username' => 'johndoe',
 'email' => 'johndoe@some-site.com',
 'logged_in' => TRUE
);

$session->set($newdata);

If you want to add sessiondata one value at a time, set() also
supports this syntax:

$session->set('some_name', 'some_value');

If you want to verify that a session value exists, simply check with
isset():

// returns FALSE if the 'some_name' item doesn't exist or is NULL,
// TRUE otherwise:
isset($_SESSION['some_name'])

Or you can call has():

$session->has('some_name');

Removing Session Data

Just as with any other variable, unsetting a value in $_SESSION can be
done through unset():

unset($_SESSION['some_name']);

// or multiple values:

unset(
 $_SESSION['some_name'],
 $_SESSION['another_name']
);

Also, just as set() can be used to add information to a
session, remove() can be used to remove it, by passing the
session key. For example, if you wanted to remove ‘some_name’ from your
session data array:

$session->remove('some_name');

This method also accepts an array of item keys to unset:

$array_items = array('username', 'email');
$session->remove($array_items);

Flashdata

FSO supports “flashdata”, or session data that will only be
available for the next request, and is then automatically cleared.

This can be very useful, especially for one-time informational, error or
status messages (for example: “Record 2 deleted”).

It should be noted that flashdata variables are regular session variables,
managed inside the FSO session handler.

To mark an existing item as “flashdata”:

$session->markAsFlashdata('item');

If you want to mark multiple items as flashdata, simply pass the keys as an
array:

$session->markAsFlashdata(array('item', 'item2'));

To add flashdata:

$_SESSION['item'] = 'value';
$session->markAsFlashdata('item');

Or alternatively, using the setFlashdata() method:

$session->setFlashdata('item', 'value');

You can also pass an array to setFlashdata(), in the same manner as
set().

Reading flashdata variables is the same as reading regular session data
through $_SESSION:

$_SESSION['item']

Important

The get() method WILL return flashdata items when
retrieving a single item by key. It will not return flashdata when
grabbing all userdata from the session, however.

However, if you want to be sure that you’re reading “flashdata” (and not
any other kind), you can also use the getFlashdata() method:

$session->getFlashdata('item');

Or to get an array with all flashdata, simply omit the key parameter:

$session->getFlashdata();

Note

The getFlashdata() method returns NULL if the item cannot be
found.

If you find that you need to preserve a flashdata variable through an
additional request, you can do so using the keepFlashdata() method.
You can either pass a single item or an array of flashdata items to keep.

$session->keepFlashdata('item');
$session->keepFlashdata(array('item1', 'item2', 'item3'));

Tempdata

FSO also supports “tempdata”, or session data with a specific
expiration time. After the value expires, or the session expires or is
deleted, the value is automatically removed.

Similarly to flashdata, tempdata variables are managed internally by the
FSO session handler.

To mark an existing item as “tempdata”, simply pass its key and expiry time
(in seconds!) to the mark_as_temp() method:

// 'item' will be erased after 300 seconds
$session->markAsTempdata('item', 300);

You can mark multiple items as tempdata in two ways, depending on whether
you want them all to have the same expiry time or not:

// Both 'item' and 'item2' will expire after 300 seconds
$session->markAsTempdata(array('item', 'item2'), 300);

// 'item' will be erased after 300 seconds, while 'item2'
// will do so after only 240 seconds
$session->markAsTempdata(array(
 'item' => 300,
 'item2' => 240
));

To add tempdata:

$_SESSION['item'] = 'value';
$session->markAsTempdata('item', 300); // Expire in 5 minutes

Or alternatively, using the setTempdata() method:

$session->setTempdata('item', 'value', 300);

You can also pass an array to set_tempdata():

$tempdata = array('newuser' => TRUE, 'message' => 'Thanks for joining!');
$session->setTempdata($tempdata, NULL, $expire);

Note

If the expiration is omitted or set to 0, the default
time-to-live value of 300 seconds (or 5 minutes) will be used.

To read a tempdata variable, again you can just access it through the
$_SESSION superglobal array:

$_SESSION['item']

Important

The get() method WILL return tempdata items when
retrieving a single item by key. It will not return tempdata when
grabbing all userdata from the session, however.

Or if you want to be sure that you’re reading “tempdata” (and not any
other kind), you can also use the getTempdata() method:

$session->getTempdata('item');

And of course, if you want to retrieve all existing tempdata:

$session->getTempdata();

Note

The getTempdata() method returns NULL if the item cannot be
found.

If you need to remove a tempdata value before it expires, you can directly
unset it from the $_SESSION array:

unset($_SESSION['item']);

However, this won’t remove the marker that makes this specific item to be
tempdata (it will be invalidated on the next HTTP request), so if you
intend to reuse that same key in the same request, you’d want to use
removeTempdata():

$session->removeTempdata('item');

Destroying a Session

To clear the current session (for example, during a logout), you may
simply use either PHP’s session_destroy() [http://php.net/session_destroy]
function, or the sess_destroy() method. Both will work in exactly the
same way:

session_destroy();

// or

$session->destroy();

Note

This must be the last session-related operation that you do
during the same request. All session data (including flashdata and
tempdata) will be destroyed permanently and functions will be
unusable during the same request after you destroy the session.

You may also use the stop() method to completely kill the session
by removing the old session_id, destroying all data, and destroying
the cookie that contained the session id:

$session->stop();

Accessing session metadata

In previous FSO versions, the session data array included 4 items
by default: ‘session_id’, ‘ip_address’, ‘user_agent’, ‘last_activity’.

This was due to the specifics of how sessions worked, but is now no longer
necessary with our new implementation. However, it may happen that your
application relied on these values, so here are alternative methods of
accessing them:

	session_id: session_id()

	ip_address: $_SERVER['REMOTE_ADDR']

	user_agent: $this->input->user_agent() (unused by sessions)

	last_activity: Depends on the storage, no straightforward way. Sorry!

Session Preferences

FSO will usually make everything work out of the box. However,
Sessions are a very sensitive component of any application, so some
careful configuration must be done. Please take your time to consider
all of the options and their effects.

You’ll find the following Session related preferences in your
application/Config/App.php file:

	Preference

	Default

	Options

	Description

	sessionDriver

	files

	files/database/redis/memcached/custom

	The session storage driver to use.

	sessionCookieName

	ci_session

	[A-Za-z_-] characters only

	The name used for the session cookie.

	sessionExpiration

	7200 (2 hours)

	Time in seconds (integer)

	The number of seconds you would like the session to last.
If you would like a non-expiring session (until browser is closed) set the value to zero: 0

	sessionSavePath

	NULL

	None

	Specifies the storage location, depends on the driver being used.

	sessionMatchIP

	FALSE

	TRUE/FALSE (boolean)

	Whether to validate the user’s IP address when reading the session cookie.
Note that some ISPs dynamically changes the IP, so if you want a non-expiring session you
will likely set this to FALSE.

	sessionTimeToUpdate

	300

	Time in seconds (integer)

	This option controls how often the session class will regenerate itself and create a new
session ID. Setting it to 0 will disable session ID regeneration.

	sessionRegenerateDestroy

	FALSE

	TRUE/FALSE (boolean)

	Whether to destroy session data associated with the old session ID when auto-regenerating
the session ID. When set to FALSE, the data will be later deleted by the garbage collector.

Note

As a last resort, the Session library will try to fetch PHP’s
session related INI settings, as well as legacy CI settings such as
‘sess_expire_on_close’ when any of the above is not configured.
However, you should never rely on this behavior as it can cause
unexpected results or be changed in the future. Please configure
everything properly.

In addition to the values above, the cookie and native drivers apply the
following configuration values shared by the IncomingRequest and
Security classes:

	Preference

	Default

	Description

	cookieDomain

	‘’

	The domain for which the session is applicable

	cookiePath

	/

	The path to which the session is applicable

	cookieSecure

	FALSE

	Whether to create the session cookie only on encrypted (HTTPS) connections

Note

The ‘cookieHTTPOnly’ setting doesn’t have an effect on sessions.
Instead the HttpOnly parameter is always enabled, for security
reasons. Additionally, the ‘cookiePrefix’ setting is completely
ignored.

Session Drivers

As already mentioned, the Session library comes with 4 handlers, or storage
engines, that you can use:

	files

	database

	redis

	memcached

By default, the Files Driver will be used when a session is initialized,
because it is the most safe choice and is expected to work everywhere
(virtually every environment has a file system).

However, any other driver may be selected via the $config['sessionDriver']
line in your application/Config/App.php file, if you chose to do so.
Have it in mind though, every driver has different caveats, so be sure to
get yourself familiar with them (below) before you make that choice.

Files Driver

The ‘files’ driver uses your file system for storing session data.

It can safely be said that it works exactly like PHP’s own default session
implementation, but in case this is an important detail for you, have it
mind that it is in fact not the same code and it has some limitations
(and advantages).

To be more specific, it doesn’t support PHP’s directory level and mode
formats used in session.save_path [http://php.net/manual/en/session.configuration.php#ini.session.save-path],
and it has most of the options hard-coded for safety. Instead, only
absolute paths are supported for $config['sess_save_path'].

Another important thing that you should know, is to make sure that you
don’t use a publicly-readable or shared directory for storing your session
files. Make sure that only you have access to see the contents of your
chosen sessionSavePath directory. Otherwise, anybody who can do that, can
also steal any of the current sessions (also known as “session fixation”
attack).

On UNIX-like operating systems, this is usually achieved by setting the
0700 mode permissions on that directory via the chmod command, which
allows only the directory’s owner to perform read and write operations on
it. But be careful because the system user running the script is usually
not your own, but something like ‘www-data’ instead, so only setting those
permissions will probable break your application.

Instead, you should do something like this, depending on your environment

mkdir /<path to your application directory>/Writable/sessions/
chmod 0700 /<path to your application directory>/Writable/sessions/
chown www-data /<path to your application directory>/Writable/sessions/

Bonus Tip

Some of you will probably opt to choose another session driver because
file storage is usually slower. This is only half true.

A very basic test will probably trick you into believing that an SQL
database is faster, but in 99% of the cases, this is only true while you
only have a few current sessions. As the sessions count and server loads
increase - which is the time when it matters - the file system will
consistently outperform almost all relational database setups.

In addition, if performance is your only concern, you may want to look
into using tmpfs [http://eddmann.com/posts/storing-php-sessions-file-caches-in-memory-using-tmpfs/],
(warning: external resource), which can make your sessions blazing fast.

Database Driver

The ‘database’ driver uses a relational database such as MySQL or
PostgreSQL to store sessions. This is a popular choice among many users,
because it allows the developer easy access to the session data within
an application - it is just another table in your database.

However, there are some conditions that must be met:

	You can NOT use a persistent connection.

	You can NOT use a connection with the cacheOn setting enabled.

In order to use the ‘database’ session driver, you must also create this
table that we already mentioned and then set it as your
$sessionSavePath value.
For example, if you would like to use ‘ci_sessions’ as your table name,
you would do this:

public $sessionDriver = 'database';
public $sessionSavePath = 'ci_sessions';

And then of course, create the database table …

For MySQL:

CREATE TABLE IF NOT EXISTS `ci_sessions` (
 `id` varchar(128) NOT NULL,
 `ip_address` varchar(45) NOT NULL,
 `timestamp` int(10) unsigned DEFAULT 0 NOT NULL,
 `data` blob NOT NULL,
 KEY `ci_sessions_timestamp` (`timestamp`)
);

For PostgreSQL:

CREATE TABLE "ci_sessions" (
 "id" varchar(128) NOT NULL,
 "ip_address" varchar(45) NOT NULL,
 "timestamp" bigint DEFAULT 0 NOT NULL,
 "data" text DEFAULT '' NOT NULL
);

CREATE INDEX "ci_sessions_timestamp" ON "ci_sessions" ("timestamp");

You will also need to add a PRIMARY KEY depending on your ‘sessionMatchIP’
setting. The examples below work both on MySQL and PostgreSQL:

// When sessionMatchIP = TRUE
ALTER TABLE ci_sessions ADD PRIMARY KEY (id, ip_address);

// When sessionMatchIP = FALSE
ALTER TABLE ci_sessions ADD PRIMARY KEY (id);

// To drop a previously created primary key (use when changing the setting)
ALTER TABLE ci_sessions DROP PRIMARY KEY;

You can choose the Database group to use by adding a new line to the
applicationConfigApp.php file with the name of the group to use:

public $sessionDBGroup = 'groupName';

If you’d rather not do all of this by hand, you can use the session:migration command
from the cli to generate a migration file for you:

> php spark session:migration
> php spark migrate

This command will take the sessionSavePath and sessionMatchIP settings into account
when it generates the code.

Important

Only MySQL and PostgreSQL databases are officially
supported, due to lack of advisory locking mechanisms on other
platforms. Using sessions without locks can cause all sorts of
problems, especially with heavy usage of AJAX, and we will not
support such cases. Use session_write_close() after you’ve
done processing session data if you’re having performance
issues.

Redis Driver

Note

Since Redis doesn’t have a locking mechanism exposed, locks for
this driver are emulated by a separate value that is kept for up
to 300 seconds.

Redis is a storage engine typically used for caching and popular because
of its high performance, which is also probably your reason to use the
‘RedisHandler’ session driver.

The downside is that it is not as ubiquitous as relational databases and
requires the phpredis [https://github.com/phpredis/phpredis] PHP
extension to be installed on your system, and that one doesn’t come
bundled with PHP.
Chances are, you’re only be using the Redis driver only if you’re already
both familiar with Redis and using it for other purposes.

Just as with the ‘files’ and ‘database’ drivers, you must also configure
the storage location for your sessions via the
$sessionSavePath setting.
The format here is a bit different and complicated at the same time. It is
best explained by the phpredis extension’s README file, so we’ll simply
link you to it:

https://github.com/phpredis/phpredis#php-session-handler

Warning

FSO’s Session library does NOT use the actual ‘redis’
session.save_handler. Take note only of the path format in
the link above.

For the most common case however, a simple host:port pair should be
sufficient:

public $sessionDiver = 'redis';
public $sessionSavePath = 'tcp://localhost:6379';

Memcached Driver

Note

Since Memcache doesn’t have a locking mechanism exposed, locks
for this driver are emulated by a separate value that is kept for
up to 300 seconds.

The ‘MemcachedHandler’ driver is very similar to the ‘redis’ one in all of its
properties, except perhaps for availability, because PHP’s Memcached [http://php.net/memcached] extension is distributed via PECL and some
Linux distributions make it available as an easy to install package.

Other than that, and without any intentional bias towards Redis, there’s
not much different to be said about Memcached - it is also a popular
product that is usually used for caching and famed for its speed.

However, it is worth noting that the only guarantee given by Memcached
is that setting value X to expire after Y seconds will result in it being
deleted after Y seconds have passed (but not necessarily that it won’t
expire earlier than that time). This happens very rarely, but should be
considered as it may result in loss of sessions.

The $sessionSavePath format is fairly straightforward here,
being just a host:port pair:

public $sessionDriver = 'memcached';
public $sessionSavePath = 'localhost:11211';

Bonus Tip

Multi-server configuration with an optional weight parameter as the
third colon-separated (:weight) value is also supported, but we have
to note that we haven’t tested if that is reliable.

If you want to experiment with this feature (on your own risk), simply
separate the multiple server paths with commas:

// localhost will be given higher priority (5) here,
// compared to 192.0.2.1 with a weight of 1.
public $sessionSavePath = 'localhost:11211:5,192.0.2.1:11211:1';

Throttler

	Overview

	Rate Limiting

	The Code

	Applying the Filter

	Class Reference

The Throttler class provides a very simple way to limit an activity to be performed a certain amount of attempts
within a set time limit. This is most often used for performing rate limiting on API’s, or restricting the number
of attempts a user can make against a form to help prevent brute force attacks. The class itself can be used
for anything that you need to throttle based on actions within a set time interval.

Overview

The Throttler implements a simplified version of the Token Bucket [https://en.wikipedia.org/wiki/Token_bucket]
algorithm. This basically treats each action that you want as a bucket. When you call the check() method,
you tell it how large the bucket is, and how many tokens it can hold and the time interval. Each check() call uses
1 of the available tokens, by default. Let’s walk through an example to make this clear.

Let’s say we want an action to happen once every second. The first call to the Throttler would look like the following,
with the first parameter being the bucket name, the second parameter the number of tokens the bucket holds, and
the third being the amount of time it takes for the bucket to refill:

$throttler = \Config\Services::throttler();
$throttler->check($name, 60, MINUTE);

Here we’re using one of the global constants for the time, to make it a little
more readable. This says that the bucket allows 60 actions every minute, or 1 action every second.

Let’s say that a third-party script was trying to hit a URL repeatedly. At first, it would be able to use all 60
of those tokens in less than a second. However, after that the Throttler would only allow one action per second,
potentially slowing down the requests enough that they attack is no longer worth it.

Note

For the Throttler class to work, the Cache library must be setup to use a handler other than dummy.
For best performance, an in-memory cache, like Redis or Memcached, is recommended.

Rate Limiting

The Throttler class does not do any rate limiting or request throttling on its own, but is the key to making
one work. An example Filter is provided that implements very simple rate limiting at
one request per second per IP address. Here we will run through how it works, and how you could set it up and
start using it in your application.

The Code

You can find this file at application/Filters/Throttle.php but the relevant method is reproduced here:

public function before(RequestInterface $request)
 {
 $throttler = Services::throttler();

 // Restrict an IP address to no more
 // than 1 request per second across the
 // entire site.
 if ($throttler->check($request->getIPAddress(), 60, MINUTE) === false)
 {
 return Services::response()->setStatusCode(429);
 }
 }

When ran, this method first grabs an instance of the throttler. Next it uses the IP address as the bucket name,
and sets things to limit them to one request per second. If the throttler rejects the check, returning false,
then we return a Response with the status code set to 429 - Too Many Attempts, and the script execution ends
before it ever hits the controller. This example will throttle based on a single IP address across all requests
made to the site, not per page.

Applying the Filter

We don’t necessarily need to throttle every page on the site. For many web applications this makes the most sense
to apply only to POST requests, though API’s might want to limit to every request made by a user. In order to apply
this to incoming requests, you need to edit /application/Config/Filters.php and first add an alias to the
filter:

public $aliases = [
 'csrf' => \App\Filters\CSRF::class,
 'toolbar' => \App\Filters\DebugToolbar::class,
 'throttle' => \App\Filters\Throttle::class
];

Next, we assign it to all POST requests made on the site:

public $methods = [
 'post' => ['throttle', 'CSRF']
];

And that’s all there is to it. Now all POST requests made on the site will have be rate limited.

Class Reference

Dates and Times

FSO provides a fully-localized, immutable, date/time class that is built on PHP’s DateTime object, but uses the Intl
extension’s features to convert times across timezones and display the output correctly for different locales. This class
is the Time class and lives in the FSOI18n namespace.

Note

Since the Time class extends DateTime, if there are features that you need that this class doesn’t provide,
you can likely find them within the DateTime class itself.

Page Contents

	Instantiating

	now()

	parse()

	today()

	yesterday()

	tomorrow()

	createFromDate()

	createFromTime()

	create()

	createFromFormat()

	createFromTimestamp()

	instance()

	toDateTime()

	Displaying the Value

	toLocalizedString()

	toDateTimeString()

	toDateString()

	toTimeString()

	humanize()

	Working with Individual Values

	getAge()

	getDST()

	getLocal()

	getUtc()

	getTimezone()

	getTimezoneName()

	Setters

	setTimezone()

	setTimestamp()

	Modifying the Value

	Comparing Two Times

	equals()

	sameAs()

	isBefore()

	isAfter()

	Viewing Differences

	humanize()

Instantiating

There are several ways that a new Time instance can be created. The first is simply to create a new instance
like any other class. When you do it this way, you can pass in a string representing the desired time. This can
be any string that PHP’s strtotime function can parse:

use FSO\I18n\Time;

$myTime = new Time('+3 week');
$myTime = new Time('now');

You can pass in strings representing the timezone and the locale in the second and parameters, respectively. Timezones
can be any supported by PHP’s DateTimeZone [http://php.net/manual/en/timezones.php] class. The locale can be
any supported by PHP’s Locale [http://php.net/manual/en/class.locale.php] class. If no locale or timezone is
provided, the application defaults will be used.

$myTime = new Time('now', 'America/Chicago', 'en_US');

now()

The Time class has several helper methods to instantiate the class. The first of these is the now() method
that returns a new instance set to the current time. You can pass in strings representing the timezone and the locale
in the second and parameters, respectively. If no locale or timezone is provided, the application defaults will be used.

$myTime = Time::now('America/Chicago', 'en_US');

parse()

This helper method is a static version of the default constructor. It takes a string acceptable as DateTime’s
constructor as the first parameter, a timezone as the second parameter, and the locale as the third parameter.:

$myTime = Time::parse('next Tuesday', 'America/Chicago', 'en_US');

today()

Returns a new instance with the date set to the current date, and the time set to midnight. It accepts strings
for the timezone and locale in the second and third parameters:

$myTime = Time::today('America/Chicago', 'en_US');

yesterday()

Returns a new instance with the date set to the yesterday’s date and the time set to midnight. It accepts strings
for the timezone and locale in the second and third parameters:

$myTime = Time::yesterday('America/Chicago', 'en_US');

tomorrow()

Returns a new instance with the date set to the tomorrow’s date and the time set to midnight. It accepts strings
for the timezone and locale in the second and third parameters:

$myTime = Time::tomorrow('America/Chicago', 'en_US');

createFromDate()

Given separate inputs for year, month, and day, will return a new instance. If any of these parameters
are not provided, it will use the current value to fill it in. Accepts strings for the timezone and locale in the
fourth and fifth parameters:

$today = Time::createFromDate(); // Uses current year, month, and day
$anniversary = Time::createFromDate(2018); // Uses current month and day
$date = Time::createFromDate(2018, 3, 15, 'America/Chicago', 'en_US');

createFromTime()

Like createFromDate except it is only concerned with the hours, minutes, and seconds. Uses the
current day for the date portion of the Time instance. Accepts strings for the timezone and locale in the
fourth and fifth parameters:

$lunch = Time::createFromTime(11, 30) // 11:30 am today
$dinner = Time::createFromTime(18, 00, 00) // 6:00 pm today
$time = Time::createFromTime($hour, $minutes, $seconds, $timezone, $locale);

create()

A combination of the previous two methods, takes year, month, day, hour, minutes, and seconds
as separate parameters. Any value not provided will use the current date and time to determine. Accepts strings for the
timezone and locale in the fourth and fifth parameters:

$time = Time::create($year, $month, $day, $hour, $minutes, $seconds, $timezone, $locale);

createFromFormat()

This is a replacement for DateTime’s method of the same name. This allows the timezone to be set at the same time,
and returns a Time instance, instead of DateTime:

$time = Time::createFromFormat('j-M-Y', '15-Feb-2009', 'America/Chicago');

createFromTimestamp()

This method takes a UNIX timestamp and, optionally, the timezone and locale, to create a new Time instance:

$time = Time::createFromTimestamp(1501821586, 'America/Chicago', 'en_US');

instance()

When working with other libraries that provide a DateTime instance, you can use this method to convert that
to a Time instance, optionally setting the locale. The timezone will be automatically determined from the DateTime
instance passed in:

$dt = new DateTime('now');
$time = Time::instance($dt, 'en_US');

toDateTime()

While not an instantiator, this method is the opposite of the instance method, allowing you to convert a Time
instance into a DateTime instance. This preserves the timezone setting, but loses the locale, since DateTime is
not aware of locales:

$datetime = Time::toDateTime();

Displaying the Value

Since the Time class extends DateTime, you get all of the output methods that provides, including the format() method.
However, the DateTime methods do not provide a localize result. The Time class does provide a number of helper methods
to display localized versions of the value, though.

toLocalizedString()

This is the localized version of DateTime’s format() method. Instead of using the values you might be familiar with, though,
you must use values acceptable to the IntlDateFormatter [http://php.net/manual/en/class.intldateformatter.php] class.
A full listing of values can be found here [http://www.icu-project.org/apiref/icu4c/classSimpleDateFormat.html#details].

	::

	$time = Time::parse(‘March 9, 2016 12:00:00’, ‘America/Chicago’);
echo $time->toLocalizedString(‘MMM d, yyyy’); // March 9, 2016

toDateTimeString()

This is the first of three helper methods to work with the IntlDateFormatter without having to remember their values.
This will return a string formatted as you would commonly use for datetime columns in a database (Y-m-d H:i:s):

$time = Time::parse('March 9, 2016 12:00:00', 'America/Chicago');
echo $time->toDateTimeString(); // 2016-03-09 12:00:00

toDateString()

Displays just the date portion of the Time:

$time = Time::parse('March 9, 2016 12:00:00', 'America/Chicago');
echo $time->toDateTimeString(); // 2016-03-09

toTimeString()

Displays just the time portion of the value:

$time = Time::parse('March 9, 2016 12:00:00', 'America/Chicago');
echo $time->toTimeString(); // 12:00:00

humanize()

This methods returns a string that displays the difference between the current date/time and the instance in a
human readable format that is geared towards being easily understood. It can create strings like ‘3 hours ago’,
‘in 1 month’, etc:

// Assume current time is: March 10, 2017 (America/Chicago)
$time = Time::parse('March 9, 2016 12:00:00', 'America/Chicago');

echo $time->humanize(); // 1 year ago

The exact time displayed is determined in the following manner:

	Time difference

	Result

	$time > 1 year && < 2 years

	in 1 year / 1 year ago

	$time > 1 month && < 1 year

	in 6 months / 6 months ago

	$time > 7 days && < 1 month

	in 3 weeks / 3 weeks ago

	$time > today && < 7 days

	in 4 days / 4 days ago

	$time == tomorrow / yesterday

	Tomorrow / Yesterday

	$time > 59 minutes && < 1 day

	1:37pm

	$time > now && < 1 hour

	in 35 minutes / 35 minutes ago

	$time == now

	Now

The exact language used is controlled through the language file, Time.php.

Working with Individual Values

The Time object provides a number of methods to allow to get and set individual items, like the year, month, hour, etc,
of an existing instance. All of the values retrieved through the following methods will be fully localized and respect
the locale that the Time instance was created with.

All of the following getX and setX methods can also be used as if they were a class property. So, any calls to methods
like getYear can also be accessed through $time->year, and so on.

The following basic getters exist:

$time = Time::parse('August 12, 2016 4:15:23pm');

echo $time->getYear(); // 2016
echo $time->getMonth(); // 8
echo $time->getDay(); // 12
echo $time->getHour(); // 16
echo $time->getMinute(); // 15
echo $time->getSecond(); // 23

echo $time->year; // 2016
echo $time->month; // 8
echo $time->day; // 12
echo $time->hour; // 16
echo $time->minute; // 15
echo $time->second; // 23

In addition to these, a number of methods exist to provide additional information about the date:

$time = Time::parse('August 12, 2016 4:15:23pm');

echo $time->getDayOfWeek(); // 6 - but may vary based on locale's starting day of the week
echo $time->getDayOfYear(); // 225
echo $time->getWeekOfMonth(); // 2
echo $time->getWeekOfYear(); // 33
echo $time->getTimestamp(); // 1471018523 - UNIX timestamp
echo $time->getQuarter(); // 3

echo $time->dayOfWeek; // 6
echo $time->dayOfYear; // 225
echo $time->weekOfMonth; // 2
echo $time->weekOfYear; // 33
echo $time->timestamp; // 1471018523
echo $time->quarter; // 3

getAge()

Returns the age, in years, of between the Time’s instance and the current time. Perfect for checking
the age of someone based on their birthday:

$time = Time::parse('5 years ago');

echo $time->getAge(); // 5
echo $time->age; // 5

getDST()

Returns boolean true/false based on whether the Time instance is currently observing Daylight Savings Time:

echo Time::createFromDate(2012, 1, 1)->getDst(); // false
echo Time::createFromDate(2012, 9, 1)->dst; // true

getLocal()

Returns boolean true if the Time instance is in the same timezone as the application is currently running in:

echo Time::now()->getLocal(); // true
echo Time::now('Europe/London'); // false

getUtc()

Returns boolean true if the Time instance is in UTC time:

echo Time::now('America/Chicago')->getUtc(); // false
echo Time::now('UTC')->utc; // true

getTimezone()

Returns a new DateTimeZone [http://php.net/manual/en/class.datetimezone.php] object set the timezone of the Time
instance:

$tz = Time::now()->getTimezone();
$tz = Time::now()->timezone;

echo $tz->getName();
echo $tz->getOffset();

getTimezoneName()

Returns the full timezone string [http://php.net/manual/en/timezones.php] of the Time instance:

echo Time::now('America/Chicago')->getTimezoneName(); // America/Chicago
echo Time::now('Europe/London')->timezoneName; // Europe/London

Setters

The following basic setters exist. If any of the values set are out of range, an InvalidArgumentExeption will be
thrown.

Note

All setters will return a new Time instance, leaving the original instance untouched.

Note

All setters will throw an InvalidArgumentException if the value is out of range.

$time = $time->setYear(2017);
$time = $time->setMonthNumber(4); // April
$time = $time->setMonthLongName('April');
$time = $time->setMonthShortName('Feb'); // February
$time = $time->setDay(25);
$time = $time->setHour(14); // 2:00 pm
$time = $time->setMinute(30);
$time = $time->setSecond(54);

setTimezone()

Converts the time from it’s current timezone into the new one:

$time = Time::parse('May 10, 2017', 'America/Chicago');
$time2 = $time->setTimezone('Europe/London'); // Returns new instance converted to new timezone

echo $time->timezoneName; // American/Chicago
echo $time2->timezoneName; // Europe/London

setTimestamp()

Returns a new instance with the date set to the new timestamp:

$time = Time::parse('May 10, 2017', 'America/Chicago');
$time2 = $time->setTimestamp(strtotime('April 1, 2017'));

echo $time->toDateTimeString(); // 2017-05-10 00:00:00
echo $time2->toDateTimeString(); // 2017-04-01 00:00:00

Modifying the Value

The following methods allow you to modify the date by adding or subtracting values to the current Time. This will not
modify the existing Time instance, but will return a new instance.

$time = $time->addSeconds(23);
$time = $time->addMinutes(15);
$time = $time->addHours(12);
$time = $time->addDays(21);
$time = $time->addMonths(14);
$time = $time->addYears(5);

$time = $time->subSeconds(23);
$time = $time->subMinutes(15);
$time = $time->subHours(12);
$time = $time->subDays(21);
$time = $time->subMonths(14);
$time = $time->subYears(5);

Comparing Two Times

The following methods allow you to compare one Time instance with another. All comparisons are first converted to UTC
before comparisons are done, to ensure that different timezones respond correctly.

equals()

Determines if the datetime passed in is equal to the current instance. Equal in this case means that they represent the
same moment in time, and are not required to be in the same timezone, as both times are converted to UTC and compared
that way:

$time1 = Time::parse('January 10, 2017 21:50:00', 'America/Chicago');
$time2 = Time::parse('January 11, 2017 03:50:00', 'Europe/London');

$time1->equals($time2); // true

The value being tested against can be a Time instance, a DateTime instance, or a string with the full date time in
a manner that a new DateTime instance can understand. When passing a string as the first parameter, you can pass
a timezone string in as the second parameter. If no timezone is given, the system default will be used:

$time1->equals('January 11, 2017 03:50:00', 'Europe/London'); // true

sameAs()

This is identical to the equals method, except that it only returns true when the date, time, AND timezone are
all identical:

$time1 = Time::parse('January 10, 2017 21:50:00', 'America/Chicago');
$time2 = Time::parse('January 11, 2017 03:50:00', 'Europe/London');

$time1->sameAs($time2); // false
$time2->sameAs('January 10, 2017 21:50:00', 'America/Chicago'); // true

isBefore()

Checks if the passed in time is before the the current instance. The comparison is done against the UTC versions of
both times:

$time1 = Time::parse('January 10, 2017 21:50:00', 'America/Chicago');
$time2 = Time::parse('January 11, 2017 03:50:00', 'America/Chicago');

$time1->isBefore($time2); // true
$time2->isBefore($time1); // false

The value being tested against can be a Time instance, a DateTime instance, or a string with the full date time in
a manner that a new DateTime instance can understand. When passing a string as the first parameter, you can pass
a timezone string in as the second parameter. If no timezone is given, the system default will be used:

$time1->isBefore('March 15, 2013', 'America/Chicago'); // false

isAfter()

Works exactly the same as isBefore() except checks if the time is after the time passed in:

$time1 = Time::parse('January 10, 2017 21:50:00', 'America/Chicago');
$time2 = Time::parse('January 11, 2017 03:50:00', 'America/Chicago');

$time1->isAfter($time2); // false
$time2->isAfter($time1); // true

Viewing Differences

To compare two Times directly, you would use the difference() method, which returns a FSOI18nTimeDifference
instance. The first parameter is either a Time instance, a DateTime instance, or a string with the date/time. If
a string is passed in the first parameter, the second parameter can be a timezone string:

$time = Time::parse('March 10, 2017', 'America/Chicago');

$diff = $time->difference(Time::now());
$diff = $time->difference(new DateTime('July 4, 1975', 'America/Chicago');
$diff = $time->difference('July 4, 1975 13:32:05', 'America/Chicago');

Once you have the TimeDifference instance, you have several methods you can use to find information about the difference
between the two times. The value returned will be negative if it was in the past, or positive if in the future from
the original time:

$current = Time::parse('March 10, 2017', 'America/Chicago');
$test = Time::parse('March 10, 2010', 'America/Chicago');

$diff = $current->difference($test);

echo $diff->getYears(); // -7
echo $diff->getMonths(); // -84
echo $diff->getWeeks(); // -365
echo $diff->getDays(); // -2557
echo $diff->getHours(); // -61368
echo $diff->getMinutes(); // -3682080
echo $diff->getSeconds(); // -220924800

You can use either getX() methods, or access the calculate values as if they were properties:

echo $diff->years; // -7
echo $diff->months; // -84
echo $diff->weeks; // -365
echo $diff->days; // -2557
echo $diff->hours; // -61368
echo $diff->minutes; // -3682080
echo $diff->seconds; // -220924800

humanize()

Much like Time’s humanize() method, this returns a string that displays the difference between the times in a
human readable format that is geared towards being easily understood. It can create strings like ‘3 hours ago’,
‘in 1 month’, etc. The biggest differences are in how very recent dates are handled:

// Assume current time is: March 10, 2017 (America/Chicago)
$time = Time::parse('March 9, 2016 12:00:00', 'America/Chicago');

echo $time->humanize(); // 1 year ago

The exact time displayed is determined in the following manner:

	Time difference

	Result

	$time > 1 year && < 2 years

	in 1 year / 1 year ago

	$time > 1 month && < 1 year

	in 6 months / 6 months ago

	$time > 7 days && < 1 month

	in 3 weeks / 3 weeks ago

	$time > today && < 7 days

	in 4 days / 4 days ago

	$time > 1 hour && < 1 day

	in 8 hours / 8 hours ago

	$time > 1 minute && < 1 hour

	in 35 minutes / 35 minutes ago

	$time < 1 minute

	Now

The exact language used is controlled through the language file, Time.php.

Typography

The Typography libary contains methods that help your format text
in semantically relevant ways.

Loading the Library

Like all services in FSO, it can be loaded via Config\Services, though you usually will not need
to load it manually:

$typography = \Config\Services::typography();

Available static functions

The following functions are available:

autoTypography()

formatCharacters()

nl2brExceptPre()

使用文件上传类

在 FSO 中通过表单使用文件上传功能将会比直接使用 PHP 的 $_FILES 数组更加简单和安全。其将继承 文件类 并获取该类的所有功能。

Note

这和 FSO 的上一版本的文件上传类不同。这次提供了一个原生接口及一些小功能来上传文件。上传类将在最终版的时提供。

Page Contents

	访问文件

	所有文件

	单个文件

	最简使用

	数组表示法

	多文件

	使用文件

	验证文件

	文件名称

	其他文件信息

	移动文件

访问文件

所有文件

当你上传文件时，PHP 可以在本地使用全局数组 $_FILES 来访问这些文件。当你同时上传多个文件时，这个数组存在一些不可忽视的缺点和很多开发者没有意识到的安全方面的潜在缺陷。FSO 通过一个公共接口来规范你对文件的使用，从而改善这些问题。

通过当前的 IncomingRequest 实例来访问文件。使用 getFiles() 方法来获取本次请求中上传的所有文件。方法将会返回由 FSO\HTTP\Files\UploadedFile 实例表示的文件数组:

$files = $this->request->getFiles();

当然，有很多种方式来为文件 input 标签命名，除了最简外任何其他任何命名方式都可能产生奇怪的结果。数组将会以你期望的方式返回。使用最简方式，一个单文件提交表单可能会是这样:

<input type="file" name="avatar" />

其将会返回一个简单的数组像是:

[
 'avatar' => // UploadedFile instance
]

如果你在标签名称中使用数组表示法，input 标签将看上去像是这样:

<input type="file" name="my-form[details][avatar]" />

getFiles() 方法返回的数组看上去将像是这样:

[
 'my-form' => [
 'details' => [
 'avatar' => // UploadedFile instance
]
]
]

在某些情况下，你可以指定一组文件元素来上传:

Upload an avatar: <input type="file" name="my-form[details][avatars][]" />
Upload an avatar: <input type="file" name="my-form[details][avatars][]" />

在这种情况下，返回的文件数组将会像是这样:

[
 'my-form' => [
 'details' => [
 'avatar' => [
 0 => /* UploadedFile instance */,
 1 => /* UploadedFile instance */
]
]
]

单个文件

如果你只需要访问单个文件，你可以使用 getFile() 方法来直接获取文件实例。其将会返回一个 FSO\HTTP\Files\UploadedFile 实例:

最简使用

使用最简方式，一个单文件提交表单可能会是这样:

<input type="file" name="userfile" />

其将会返回一个简单的文件实例像是:

$file = $this->request->getFile('userfile');

数组表示法

如果你在标签名称中使用数组表示法，input 标签将看上去像是这样:

<input type="file" name="my-form[details][avatar]" />

这样来获取文件实例:

$file = $this->request->getFile('my-form.details.avatar');

多文件

<input type=”file” name=”images[]” multiple />

	在控制器中::

	if($imagefile = $this->request->getFiles())
{

foreach($imagefile[‘images’] as $img)
{

if ($img->isValid() && ! $img->hasMoved())
{

$newName = $img->getRandomName();
$img->move(WRITEPATH.’uploads’, $newName);

}

}

}

循环中的 images 是表单中的字段名称

如果多个文件使用相同名称提交，你可以使用 getFile() 去逐个获取每个文件::
在控制器中:

$file1 = $this->request->getFile('images.0');
$file2 = $this->request->getFile('images.1');

另外一个例子:

Upload an avatar: <input type="file" name="my-form[details][avatars][]" />
Upload an avatar: <input type="file" name="my-form[details][avatars][]" />

在控制器中:

$file1 = $this->request->getFile('my-form.details.avatars.0');
$file2 = $this->request->getFile('my-form.details.avatars.1');

Note

使用 getFiles() 更合适。

使用文件

一旦你获取到了 UploadedFile 实例,你可以以安全的方式检索到文件的信息，还能将文件移动到新的位置。

验证文件

你可以调用 isValid() 方法来检查文件是否是通过 HTTP 无误上传的:

if (! $file->isValid())
{
 throw new RuntimeException($file->getErrorString().'('.$file->getError().')');
}

如这个例子所见，如果一个文件产生一个上传错误，你可以通过 getError() 和 getErrorString() 方法获取错误码（一个整数）和错误消息。通过此方法可以发现以下错误:

	文件大小超过了 upload_max_filesize 配置的值。

	文件大小超过了表单定义的上传限制。

	文件仅部分被上传。

	没有文件被上传。

	无法将文件写入磁盘。

	无法上传文件：缺少临时目录。

	PHP扩展阻止了文件上传。

文件名称

getName()

你可以通过 getName() 提取到客户端提供的文件的原始名称。其通常是由客户端发送的文件名，不应受信。如果文件已经被移动，将返回移动文件的最终名称:

$name = $file->getName();

getClientName()

总是返回由客户端发送的上传文件的原始名称，即使文件已经被移动了:

$originalName = $file->getClientName();

getTempName()

要获取在上传期间产生的临时文件的全路径，你可以使用 getTempName() 方法:

$tempfile = $file->getTempName();

其他文件信息

getClientExtension()

基于上传文件的名称，返回原始文件扩展名。这不是一个值得信赖的来源。对于可信的版本，请使用 getExtension() 来代替:

$ext = $file->getClientExtension();

getClientType()

返回由客户端提供的文件的媒体类型(mime type)。这不是一个值得信赖的值，对于可信的版本，请使用 getType() 来代替:

$type = $file->getClientType();

echo $type; // image/png

移动文件

每个文件都可以使用恰如其名的 ``move()` 方法来移动到新的位置。使用第一个参数为目标目录来移动文件:

$file->move(WRITEPATH.'uploads');

默认的，将使用文件原始名称。你可以指定一个新的文件名称作为第二个参数传递给方法。

$newName = $file->getRandomName();
$file->move(WRITEPATH.’uploads’, $newName);

一旦文件被移除，将删除临时文件。你可以通过 hasMoved() 方法来检查文件是否已经被移动了，返回布尔值:

if ($file->isValid() && ! $file->hasMoved())
{
 $file->move($path);
}

使用 URI 类

CodeIngiter 为你在应用中使用 URI 类提供了一个面向对象的解决方案。使用这种方式可以轻易地确保结构始终准确，无论 URI 的复杂程度如何，也能将相对 URI 添加到现有应用中，并保证其可以被安全、准确地解析。

Page Contents

	使用 URI 类

	创建 URI 实例

	当前 URI

	URI 字符串

	URI 的组成

	Scheme

	Authority

	Userinfo

	Host

	Port

	Path

	Query

	Fragment

	URI 分段

创建 URI 实例

就像创建一个普通类实例一样去创建一个 URI 实例:

$uri = new \FSO\HTTP\URI();

或者，你可以使用 service() 方法来返回一个 URI 实例:

$uri = service('uri');

当创建新实例的时候，你可以将完整或部分 URL 传递给构造函数，其将会被解析为相应的分段:

$uri = new \FSO\HTTP\URI('http://www.example.com/some/path');
$uri = service('uri', 'http://www.example.com/some/path');

当前 URI

很多时候，你真正想要的是一个表示着当前请求 URL 的对象。可以有两种不同的方式来获取。第一，直接从当前请求对象中提取。假设你所在的控制器已继承自 FSO\Controller，可以这样做:

$uri = $this->request->uri;

第二，你可以使用 url_helper 中的一个可用函数来获取:

helper('url');
$uri = current_url(true);

你必须在第一个参数中传递 true,否则该函数将仅返回表示当前 URL 的字符串。

URI 字符串

很多时候，你真正想要的是得到一个表示 URI 的字符串。那直接将 URI 对象转换为字符串就可以了:

$uri = current_url(true);
echo (string)$uri; // http://example.com

如果你知道 URI 的各个部分，同时还想确保其格式准确无误，你可以通过使用 URI 类的静态方法 createURIString() 来生成字符串:

$uriString = URI::createURIString($scheme, $authority, $path, $query, $fragment);

// Creates: http://exmample.com/some/path?foo=bar#first-heading
echo URI::createURIString('http', 'example.com', 'some/path', 'foo=bar', 'first-heading');

URI 的组成

一旦你得到了一个 URI 实例，你就可以设置或检索这个 URI 的任意部分。本节将详细介绍这些部分的内容及如何使用它们。

Scheme

最常见的传输协议是 ‘http’ 或 ‘https’，同时也支持如 ‘file’, ‘mailto’ 等其他协议。

$uri = new \FSO\HTTP\URI('http://www.example.com/some/path');

echo $uri->getScheme(); // 'http'
$uri->setScheme('https');

Authority

许多 URI 内装载着被统称为 ‘authority’ 的数个元素，包括用户信息，主机地址和端口号。你可以通过 getAuthority() 方法来获取一个包含了所有相关元素的字符串，也可以对独立的元素进行操作。

$uri = new \FSO\HTTP\URI('ftp://user:password@example.com:21/some/path');

echo $uri->getAuthority(); // user@example.com:21

默认情况下，因为你不希望向别人展示密码，所以它不会被显示出来。如你想展示密码，可以使用 showPassword() 方法。URI 实例会在你再次关掉显示之前一直保持密码部分地展示，所以你应在使用完成后立刻关闭它:

echo $uri->getAuthority(); // user@example.com:21
echo $uri->showPassword()->getAuthority(); // user:password@example.com:21

// Turn password display off again.
$uri->showPassword(false);

如果你不想显示端口，可以传递唯一参数 true:

echo $uri->getAuthority(true); // user@example.com

Note

如果当前端口值是传输协议的默认端口值，那它将永远不会被显示。

Userinfo

用户信息部分是在使用 FTP URI 时你看到的用户名和密码。当你能在 Authority 中得到它时，你也可以通过方法直接获取它:

echo $uri->getUserInfo(); // user

默认情况下，它将不会展示密码，但是你可以通过 showPassword() 方法来重写它:

echo $uri->showPassword()->getUserInfo(); // user:password
$uri->showPassword(false);

Host

URI 的主机部分通常是 URL 的域名。可以通过 getHost() 和 setHost() 方法很容易地设置和获取:

$uri = new \FSO\HTTP\URI('http://www.example.com/some/path');

echo $uri->getHost(); // www.example.com
echo $uri->setHost('anotherexample.com')->getHost(); // anotherexample.com

Port

端口值是一个在 0 到 65535 之间的整数。每个协议都会有一个与之关联的默认端口值。

$uri = new \FSO\HTTP\URI('ftp://user:password@example.com:21/some/path');

echo $uri->getPort(); // 21
echo $uri->setPort(2201)->getPort(); // 2201

当使用 setPort() 方法时，端口值会在通过可用范围值检查后被设置。

Path

路径是站点自身的所有分段。如你所料，可以使用 getPath() 和 setPath() 方法来操作它:

$uri = new \FSO\HTTP\URI('http://www.example.com/some/path');

echo $uri->getPath(); // 'some/path'
echo $uri->setPath('another/path')->getPath(); // 'another/path'

Note

以这种方式或类允许的其他方式设置 path 的时候，将会对危险字符进行编码，并移除点分段来确保安全。

Query

查询变量可以通过类使用简单的字符串来调整。Query 的值通常只能设定为一个字符串。

$uri = new \FSO\HTTP\URI('http://www.example.com?foo=bar');

echo $uri->getQuery(); // 'foo=bar'
$uri->setQuery('foo=bar&bar=baz');

Note

Query 值不能包含片段，否则会抛出一个 InvalidArgumentException 异常。

你可以使用一个数组来设置查询值:

$uri->setQueryArray(['foo' => 'bar', 'bar' => 'baz']);

setQuery() 和 setQueryArray() 方法会重写已经存在的查询变量。你可以使用 addQuery() 方法在不销毁已存在查询变量的前提下追加值。第一个参数是变量名，第二个参数是值:

$uri->addQuery('foo', 'bar');

过滤查询值

你可以对 getQuery() 方法传递一个选项数组来过滤查询返回值，使用关键字 only 或 except:

$uri = new \FSO\HTTP\URI('http://www.example.com?foo=bar&bar=baz&baz=foz');

// Returns 'foo=bar'
echo $uri->getQuery(['only' => ['foo']);

// Returns 'foo=bar&baz=foz'
echo $uri->getQuery(['except' => ['bar']]);

这样只是对调用方法后的返回值进行更改。如果你需要对 URI 对象的查询值进行永久地更改，可以使用 stripQuery() 和 keepQuery() 方法来更改真实对象的查询变量:

$uri = new \FSO\HTTP\URI('http://www.example.com?foo=bar&bar=baz&baz=foz');

// Leaves just the 'baz' variable
$uri->stripQuery('foo', 'bar');

// Leaves just the 'foo' variable
$uri->keepQuery('foo');

Fragment

片段是 URL 的结尾部分，前面是英镑符号 (#)。在 HTML 中，它们是指向页面锚点的链接。媒体 URI 可以用其他各种方法来使用它们。

$uri = new \FSO\HTTP\URI('http://www.example.com/some/path#first-heading');

echo $uri->getFragment(); // 'first-heading'
echo $uri->setFragment('second-heading')->getFragment(); // 'second-heading'

URI 分段

路径中，斜杠之间的每一节都是一个单独的分段。URI 类提供一个简单的方式去界定段值。路径最左侧的段为起始段 1。

// URI = http://example.com/users/15/profile

// Prints '15'
if ($request->uri->getSegment(1) == 'users')
{
 echo $request->uri->getSegment(2);
}

你能得到总分段数量:

$total = $request->uri->getTotalSegments(); // 3

最后，你能获取到一个包含着所有分段的数组:

$segments = $request->uri->getSegments();

// $segments =
[
 0 => 'users',
 1 => '15',
 2 => 'profile'
]

Validation

FSO provides a comprehensive data validation class that
helps minimize the amount of code you’ll write.

Page Contents

	Validation

	Overview

	Form Validation Tutorial

	The Form

	The Success Page

	The Controller

	Try it!

	Explanation

	Loading the Library

	Setting Validation Rules

	setRule()

	setRules()

	withRequest()

	Validate 1 Value

	Saving Sets of Validation Rules to the Config File

	How to save your rules

	Getting & Setting Rule Groups

	Get Rule Group

	Set Rule Group

	Working With Errors

	Setting Custom Error Messages

	Getting All Errors

	Getting a Single Error

	Check If Error Exists

	Customizing Error Display

	Creating the Views

	Configuration

	Specifying the Template

	Creating Custom Rules

	Allowing Parameters

	Available Rules

	Rules for File Uploads

Overview

Before explaining FSO’s approach to data validation, let’s
describe the ideal scenario:

	A form is displayed.

	You fill it in and submit it.

	If you submitted something invalid, or perhaps missed a required
item, the form is redisplayed containing your data along with an
error message describing the problem.

	This process continues until you have submitted a valid form.

On the receiving end, the script must:

	Check for required data.

	Verify that the data is of the correct type, and meets the correct
criteria. For example, if a username is submitted it must be
validated to contain only permitted characters. It must be of a
minimum length, and not exceed a maximum length. The username can’t
be someone else’s existing username, or perhaps even a reserved word.
Etc.

	Sanitize the data for security.

	Pre-format the data if needed (Does the data need to be trimmed? HTML
encoded? Etc.)

	Prep the data for insertion in the database.

Although there is nothing terribly complex about the above process, it
usually requires a significant amount of code, and to display error
messages, various control structures are usually placed within the form
HTML. Form validation, while simple to create, is generally very messy
and tedious to implement.

Form Validation Tutorial

What follows is a “hands on” tutorial for implementing FSO’s Form
Validation.

In order to implement form validation you’ll need three things:

	A View file containing a form.

	A View file containing a “success” message to be displayed upon
successful submission.

	A controller method to receive and
process the submitted data.

Let’s create those three things, using a member sign-up form as the
example.

The Form

Using a text editor, create a form called Signup.php. In it, place this
code and save it to your application/Views/ folder:

<html>
<head>
 <title>My Form</title>
</head>
<body>

<?= $validation->listErrors() ?>

<?= form_open('form') ?>

<h5>Username</h5>
<input type="text" name="username" value="" size="50" />

<h5>Password</h5>
<input type="text" name="password" value="" size="50" />

<h5>Password Confirm</h5>
<input type="text" name="passconf" value="" size="50" />

<h5>Email Address</h5>
<input type="text" name="email" value="" size="50" />

<div><input type="submit" value="Submit" /></div>

</form>

</body>
</html>

The Success Page

Using a text editor, create a form called Success.php. In it, place
this code and save it to your application/Views/ folder:

<html>
<head>
 <title>My Form</title>
</head>
<body>

<h3>Your form was successfully submitted!</h3>

<p><?= anchor('form', 'Try it again!') ?></p>

</body>
</html>

The Controller

Using a text editor, create a controller called Form.php. In it, place
this code and save it to your application/Controllers/ folder:

 <?php namespace App\Controllers;

use FSO\Controller;

 class Form extends Controller
 {
 public function index()
 {
 helper(['form', 'url']);

 if (! $this->validate([]))
 {
 echo view('Signup', [
 'validation' => $this->validation
]);
 }
 else
 {
 echo view('Success');
 }
 }
 }

Try it!

To try your form, visit your site using a URL similar to this one:

example.com/index.php/form/

If you submit the form you should simply see the form reload. That’s
because you haven’t set up any validation rules yet.

Since you haven’t told the Validation class to validate anything
yet, it returns false (boolean false) by default. The ``validate()`` method
only returns true if it has successfully applied your rules without any
of them failing.

Explanation

You’ll notice several things about the above pages:

The form (Signup.php) is a standard web form with a couple exceptions:

	It uses a form helper to create the form opening. Technically, this
isn’t necessary. You could create the form using standard HTML.
However, the benefit of using the helper is that it generates the
action URL for you, based on the URL in your config file. This makes
your application more portable in the event your URLs change.

	At the top of the form you’ll notice the following function call:

<?= $validation->listErrors() ?>

This function will return any error messages sent back by the
validator. If there are no messages it returns an empty string.

The controller (Form.php) has one method: index(). This method
uses the Controller-provided validate method and loads the form helper and URL
helper used by your view files. It also runs the validation routine.
Based on whether the validation was successful it either presents the
form or the success page.

Loading the Library

The library is loaded as a service named validation:

$validation = \Config\Services::validation();

This automatically loads the Config\Validation file which contains settings
for including multiple Rule sets, and collections of rules that can be easily reused.

Note

You may never need to use this method, as both the Controller and
the Model provide methods to make validation even easier.

Setting Validation Rules

FSO lets you set as many validation rules as you need for a
given field, cascading them in order. To set validation rules you
will use the setRule(), setRules(), or withRequest()
methods.

setRule()

This method sets a single rule. It takes the name of field as
the first parameter, and a string with a pipe-delimited list of rules
that should be applied:

$validation->setRule('username', 'required');

The field name must match the key of any data array that is sent in. If
the data is taken directly from $_POST, then it must be an exact match for
the form input name.

setRules()

Like, setRule(), but accepts an array of field names and their rules:

$validation->setRules([
 'username' => 'required',
 'password' => 'required|min_length[10]'
]);

withRequest()

One of the most common times you will use the validation library is when validating
data that was input from an HTML form. If desired, you can pass an instance of the
current Request object and it will take all of the $_POST data and set it as the
data to be validated:

$validation->withRequest($this->request)
 ->run();

Validate 1 Value

Validate one value against a rule.

$validation->check($value, ‘required’);

Saving Sets of Validation Rules to the Config File

A nice feature of the Validation class is that it permits you to store all
your validation rules for your entire application in a config file. You organize
the rules into “groups”. You can specify a different group every time you run
the validation.

How to save your rules

To store your validation rules, simply create a new public property in the Config\Validation
class with the name of your group. This element will hold an array with your validation
rules. As shown earlier, the validation array will have this prototype:

class Validation
{
 public $signup = [
 'username' => 'required',
 'password' => 'required',
 'pass_confirm' => 'required|matches[password]',
 'email' => 'required|valid_email'
];
}

You can specify the group to use when you call the run() method:

$validation->run($data, $signup);

You can also store custom error messages in this configuration file by naming the
property the same as the group, and appended with _errors. These will automatically
be used for any errors when this group is used:

class Validation
{
 public $signup = [
 'username' => 'required',
 'password' => 'required',
 'pass_confirm' => 'required|matches[password]',
 'email' => 'required|valid_email'
];

 public $signup_errors = [
 'username' => [
 'required' => 'You must choose a username.',
],
 'email' => [
 'valid_email' => 'Please check the Email field. It does not appear to be valid.'
]
];
}

See below for details on the formatting of the array.

Getting & Setting Rule Groups

Get Rule Group

This method gets a rule group from the validation configuration.

$validation->getRuleGroup(‘signup’);

Set Rule Group

This method sets a rule group from the validation configuration to the validation service.

$validation->setRuleGroup(‘signup’);

Working With Errors

The Validation library provides several methods to help you set error messages, provide
custom error messages, and retrieve one or more errors to display.

By default, error messages are derived from language strings in system/Language/en/Validation.php, where
each rule has an entry.

TODO: Determine how to easily add custom rule messages.

Setting Custom Error Messages

Both the setRule() and setRules() methods can accept an array of custom messages
that will be used as errors specific to each field as their last parameter. This allows
for a very pleasant experience for the user since the errors are tailored to each
instance. If not custom error message is provided, the default value will be used.

The array is structured as follows:

[
 'field' => [
 'rule' => 'message',
 'rule' => 'message',
],
]

Here is a more practical example:

$rules = [
 'username' => [
 'required' => 'All accounts must have usernames provided',
],
 'password' => [
 'min_length' => 'Your password is too short. You want to get hacked?'
]
];

$validation->setRules([
 'username' => 'required|is_unique[users.username]',
 'password' => 'required|min_length[10]'
],
 $rules
);

Getting All Errors

If you need to retrieve all error messages for failed fields, you can use the getErrors() method:

$errors = $validation->getErrors();

// Returns:
[
 'field1' => 'error message',
 'field2' => 'error message',
]

If no errors exist, an empty array will be returned.

Getting a Single Error

You can retrieve the error for a single field with the getError() method. The only parameter is the field
name:

$error = $validation->getError('username');

If no error exists, an empty string will be returned.

Check If Error Exists

You can check to see if an error exists with the hasError() method. The only parameter is the field name:

if ($validation->hasError('username')
{
 echo $validation->getError('username');
}

Customizing Error Display

When you call $validation->listErrors() or $validation->showError(), it loads a view file in the background
that determines how the errors are displayed. By default, they display in a manner compatible with the
Bootstrap [http://getbootstrap.com/] CSS framework. You can easily create new views and use them throughout your
application.

Creating the Views

The first step is to create the custom views. These can be placed anywhere that the view() method can locate them,
which means the standard View directory, or any namespaced View folder will work. For example, you could create
a new view at /application/Views/_errors_list.php:

<div class="alert alert-danger" role="alert">

 <?php foreach ($errors as $error) : ?>
 <?= esc($error) ?>
 <?php endforeach ?>

</div>

An array named $errors is available within the view that contains a list of the errors, where the key is
the name of the field that had the error, and the value is the error message, like this:

$errors = [
 'username' => 'The username field must be unique.',
 'email' => 'You must provide a valid email address.'
];

There are actually two types of views that you can create. The first has an array of all of the errors, and is what
we just looked at. The other type is simpler, and only contains a single variable, $error that contains the
error message. This is used with the showError() method where a field must be specified:

<?= esc($error) ?>

Configuration

Once you have your views created, you need to let the Validation library know about them. Open Config/Validation.php.
Inside, you’ll find the $templates property where you can list as many custom views as you want, and provide an
short alias they can be referenced by. If we were to add our example file from above, it would look something like:

public $templates = [
 'list' => 'FSO\Validation\Views\list',
 'single' => 'FSO\Validation\Views\single',
 'my_list' => '_errors_list'
];

Specifying the Template

You can specify the template to use by passing it’s alias as the first parameter in listErrors:

<?= $validation->listErrors('my_list') ?>

When showing field-specific errors, you can pass the alias as the second parameter to the showError method,
right after the name of the field the error should belong to:

<?= $validation->showError('username', 'my_single') ?>

Creating Custom Rules

Rules are stored within simple, namespaced classes. They can be stored any location you would like, as long as the
autoloader can find it. These files are called RuleSets. To add a new RuleSet, edit Config/Validation.php and
add the new file to the $ruleSets array:

public $ruleSets = [
 \FSO\Validation\Rules::class,
 \FSO\Validation\FileRules::class,
 \FSO\Validation\CreditCardRules::class,
];

You can add it as either a simple string with the fully qualified class name, or using the ::class suffix as
shown above. The primary benefit here is that it provides some extra navigation capabilities in more advanced IDEs.

Within the file itself, each method is a rule and must accept a string as the first parameter, and must return
a boolean true or false value signifying true if it passed the test or false if it did not:

class MyRules
{
 public function even(string $str): bool
 {
 return (int)$str % 2 == 0;
 }
}

By default, the system will look within FSO\Language\en\Validation.php for the language strings used
within errors. In custom rules you may provide error messages by accepting an $error variable by reference in the
second parameter:

public function even(string $str, string &$error = null): bool
{
 if ((int)$str % 2 != 0)
 {
 $error = lang('myerrors.evenError');
 return false;
 }

 return true;
}

Your new custom rule could now be used just like any other rule:

$this->validate($request, [
 'foo' => 'required|even'
]);

Allowing Parameters

If your method needs to work with parameters, the function will need a minimum of three parameters: the string to validate,
the parameter string, and an array with all of the data that was submitted the form. The $data array is especially handy
for rules like require_with that needs to check the value of another submitted field to base its result on:

public function required_with($str, string $fields, array $data): bool
 {
 $fields = explode(',', $fields);

 // If the field is present we can safely assume that
 // the field is here, no matter whether the corresponding
 // search field is present or not.
 $present = $this->required($data[$str] ?? null);

 if ($present === true)
 {
 return true;
 }

 // Still here? Then we fail this test if
 // any of the fields are present in $data
 $requiredFields = array_intersect($fields, $data);

 $requiredFields = array_filter($requiredFields, function($item)
 {
 return ! empty($item);
 });

 return ! (bool)count($requiredFields);
 }

Custom errors can be returned as the fourth parameter, just as described above.

Available Rules

The following is a list of all the native rules that are available to use:

	Rule

	Parameter

	Description

	Example

	alpha

	No

	Fails if field has anything other than alphabetic characters.

	

	alpha_space

	No

	Fails if field contains anything other than alphabetic characters or spaces.

	

	alpha_dash

	No

	Fails if field contains anything other than alpha-numeric characters, underscores or dashes.

	

	alpha_numeric

	No

	Fails if field contains anything other than alpha-numeric characters or numbers.

	

	alpha_numeric_space

	No

	Fails if field contains anything other than alpha-numeric characters, numbers or space.

	

	decimal

	No

	Fails if field contains anything other than a decimal number.

	

	differs

	Yes

	Fails if field does not differ from the one in the parameter.

	differs[field_name]

	exact_length

	Yes

	Fails if field is not exactly the parameter value.

	exact_length[5]

	greater_than

	Yes

	Fails if field is less than or equal to the parameter value or not numeric.

	greater_than[8]

	greater_than_equal_to

	Yes

	Fails if field is less than the parameter value, or not numeric.

	greater_than_equal_to[5]

	in_list

	Yes

	Fails if field is not within a predetermined list.

	in_list[red,blue,green]

	integer

	No

	Fails if field contains anything other than an integer.

	

	is_natural

	No

	Fails if field contains anything other than a natural number: 0, 1, 2, 3, etc.

	

	is_natural_no_zero

	No

	Fails if field contains anything other than a natural number, except zero: 1, 2, 3, etc.

	

	less_than

	Yes

	Fails if field is greater than or equal to the parameter value or not numeric.

	less_than[8]

	less_then_equal_to

	Yes

	Fails if field is greater than the parameter value or not numeric.

	less_than_equal_to[8]

	matches

	Yes

	The value must match the value of the field in the parameter.

	matches[field]

	max_length

	Yes

	Fails if field is longer than the parameter value.

	max_length[8]

	min_length

	Yes

	Fails if field is shorter than the parameter value.

	min_length[3]

	numeric

	No

	Fails if field contains anything other than numeric characters.

	

	regex_match

	Yes

	Fails if field does not match the regular expression.

	regex_match[/regex/]

	required

	No

	Fails if the field is empty.

	

	required_with

	Yes

	The field is required if any of the fields in the parameter are set.

	required_with[field1,field2]

	required_without

	Yes

	The field is required when any of the fields in the parameter are not set.

	required_without[field1,field2]

	is_unique

	Yes

	Checks if this field value exists in the database. Optionally set a
column and value to ignore, useful when updating records to ignore itself.

	is_unique[table.field,ignore_field,ignore_value]

	timezone

	No

	Fails if field does match a timezone per timezone_identifiers_list

	

	valid_base64

	No

	Fails if field contains anything other than valid Base64 characters.

	

	valid_email

	No

	Fails if field does not contain a valid email address.

	

	valid_emails

	No

	Fails if any value provided in a comma separated list is not a valid email.

	

	valid_ip

	No

	Fails if the supplied IP is not valid. Accepts an optional parameter of ‘ipv4’ or
‘ipv6’ to specify an IP format.

	valid_ip[ipv6]

	valid_url

	No

	Fails if field does not contain a valid URL.

	

	valid_cc_number

	Yes

	Verifies that the credit card number matches the format used by the specified provider.
Current supported providers are: American Express (amex), China Unionpay (unionpay),
Diners Club CarteBlance (carteblanche), Diners Club (dinersclub), Discover Card (discover),
Interpayment (interpayment), JCB (jcb), Maestro (maestro), Dankort (dankort), NSPK MIR (mir),
MasterCard (mastercard), Visa (visa), UATP (uatp), Verve (verve),
CIBC Convenience Card (cibc), Royal Bank of Canada Client Card (rbc),
TD Canada Trust Access Card (tdtrust), Scotiabank Scotia Card (scotia), BMO ABM Card (bmoabm),
HSBC Canada Card (hsbc)

	valid_cc_number[amex]

Rules for File Uploads

These validation rules enable you to do the basic checks you might need to verify that uploaded files meet your business needs.
Since the value of a file upload HTML field doesn’t exist, and is stored in the $_FILES global, the name of the input field will
need to be used twice. Once to specify the field name as you would for any other rule, but again as the first parameter of all
file upload related rules:

// In the HTML
<input type="file" name="avatar">

// In the controller
$this->validate([
 'avatar' => 'uploaded[avatar]|max_size[avatar,1024]'
]);

	Rule

	Parameter

	Description

	Example

	uploaded

	Yes

	Fails if the name of the parameter does not match the name of any uploaded files.

	uploaded[field_name]

	max_size

	Yes

	Fails if the uploaded file named in the parameter is larger than the second parameter in
kilobytes (kb).

	max_size[field_name,2048]

	max_dims

	Yes

	Files if the maximum width and height of an uploaded image exceeds values. The first parameter
is the field name. The second is the width, and the third is the height. Will also fail if
the file cannot be determined to be an image.

	max_dims[field_name,300,150]

	mime_in

	Yes

	Fails if the file’s mime type is not one listed in the parameter.

	mime_in[field_name,image/png,image/jpg]

	ext_in

	Yes

	Fails if the file’s extension is not one listed in the parameter.

	ext_in[field_name,png,jpg,gif]

	is_image

	Yes

	Fails if the file cannot be determined to be an image based on the mime type.

	is_image[field_name]

Note

You can also use any native PHP functions that permit up
to two parameters, where at least one is required (to pass
the field data).

在视图文件中使用PHP替代语法

如果你不使用模板引擎来简化输出，那么意味着你将在视图文件中使用纯 PHP 语法。为了精简视图文件中的 PHP 代码同时增强代码的可读性，建议你在写控制结构和 echo 语句时使用 PHP 的替代语法。如果你对这个语法还不熟悉，下面将介绍如何通过这个语法来消除你代码中的大括号和 echo 语句。

Echo 的替代语法

通常来说，你在输出或打印一个变量的时候会这样做:

<?php echo $variable; ?>

而使用替代语法，你可以写成这样:

<?= $variable?>

控制结构的替代语法

像 if、for、foreach、while 这样的控制结构也可以写成简化格式。下面以 foreach 举例:

<?php foreach ($todo as $item) : ?>

 <?= $item ?>

<?php endforeach ?>

注意这里没有任何括号，结束括号被 endforeach 取而代之。上面列举出的那些控制结构都有相似的结束标志: endif, endfor, endforeach 和 endwhile。

同时要注意的是，每个结构分支后面都要跟一个冒号(除了最后一个)，而不是分号,这很重要!

这是另外一个样例，使用了 if/elseif/else，注意看分支语句后的冒号:

<?php if ($username === 'sally') : ?>

 <h3>Hi Sally</h3>

<?php elseif ($username === 'joe') : ?>

 <h3>Hi Joe</h3>

<?php else : ?>

 <h3>Hi unknown user</h3>

<?php endif ?>

网页缓存

FSO 可以让你通过缓存页面来达到更好的性能。

尽管 FSO 已经相当高效了，但是网页中的动态内容、主机的内存 CPU 和数据库读取速度等因素直接影响了网页的加载速度。 依靠网页缓存， 你的网页可以达到近乎静态网页的加载速度，因为程序的输出结果 已经保存下来了。

缓存是如何工作的？

可以针对到每个独立的页面进行缓存，并且你可以设置每个页面缓存的更新时间。 当页面第一次加载时，缓存将被写入到 application/cache 目录下的文件中去。 之后请求这个页面时，就可以直接从缓存文件中读取内容并输出到用户的浏览器。 如果缓存过期，会在输出之前被删除并重新刷新。

Note

基准标记没有缓存，所以当缓存启用时，仍然可以查看页面加载速度。

开启缓存

将下面的代码放到任何一个控制器的方法内，你就可以开启缓存了:

$this->cachePage($n);

其中 $n 是缓存更新的时间（单位分钟）。

上面的代码可以放在方法的任何位置它出现的顺序对缓存没有影响，所以你可以把它放到任何你认为合理的地方。一旦该代码被放在方法内，你的页面就开始被缓存了。

Important

如果你修改了可能影响页面输出的配置，你需要手动删除你的缓存文件。

Note

在写入缓存文件之前，必须通过编辑 application/Config/Cache.php 文件来设置缓存引擎。

删除缓存

如果你不再需要缓存某个页面，你可以删除掉该页面上的缓存代码，这样它在过期之后就不会刷新了。

Note

删除缓存代码之后并不是立即生效，必须等到缓存过期才会生效。

Running via the CLI

As well as calling an applications Controllers
via the URL in a browser they can also be loaded via the command-line
interface (CLI).

Page Contents

	Running via the CLI

	What is the CLI?

	Why run via the command-line?

	Let’s try it: Hello World!

	That’s the basics!

	CLI-Only Routing

	The CLI Library

What is the CLI?

The command-line interface is a text-based method of interacting with
computers. For more information, check the Wikipedia
article [http://en.wikipedia.org/wiki/Command-line_interface].

Why run via the command-line?

There are many reasons for running FSO from the command-line,
but they are not always obvious.

	Run your cron-jobs without needing to use wget or curl.

	Make your cron-jobs inaccessible from being loaded in the URL by
checking the return value of :php:func:`is_cli()`.

	Make interactive “tasks” that can do things like set permissions,
prune cache folders, run backups, etc.

	Integrate with other applications in other languages. For example, a
random C++ script could call one command and run code in your models!

Let’s try it: Hello World!

Let’s create a simple controller so you can see it in action. Using your
text editor, create a file called Tools.php, and put the following code
in it:

<?php
class Tools extends \FSO\Controller {

 public function message($to = 'World')
 {
 echo "Hello {$to}!".PHP_EOL;
 }
}

Then save the file to your application/Controllers/ directory.

Now normally you would visit the your site using a URL similar to this:

example.com/index.php/tools/message/to

Instead, we are going to open Terminal in Mac/Linux or go to Run > “cmd”
in Windows and navigate to our FSO project’s web root.

$ cd /path/to/project/public
$ php index.php tools message

If you did it right, you should see Hello World! printed.

$ php index.php tools message "John Smith"

Here we are passing it a argument in the same way that URL parameters
work. “John Smith” is passed as a argument and output is:

Hello John Smith!

That’s the basics!

That, in a nutshell, is all there is to know about controllers on the
command line. Remember that this is just a normal controller, so routing
and _remap() works fine.

However, FSO provides additional tools to make creating CLI-accessible
scripts even more pleasant, include CLI-only routing, and a library that helps
you with CLI-only tools.

CLI-Only Routing

In your Routes.php file you can create routes that are only accessible from
the CLI as easily as you would create any other route. Instead of using the get(),
post(), or similar method, you would use the cli() method. Everything else
works exactly like a normal route definition:

$routes->cli('tools/message/(:segment)', 'Tools::message/$1');

For more information, see the Routes page.

The CLI Library

The CLI library makes working with the CLI interface simple.
It provides easy ways to output text in multiple colors to the terminal window. It also
allows you to prompt a user for information, making it easy to build flexible, smart tools.

See the CLI Library page for detailed information.

Custom CLI Commands

While the ability to use cli commands like any other route is convenient, you might find times where you
need a little something different. That’s where CLI Commands come in. They are simple classes that do not
need to have routes defined for, making them perfect for building tools that developers can use to make
their jobs simpler, whether by handling migrations or database seeding, checking cronjob status, or even
building out custom code generators for your company.

Page Contents

	Custom CLI Commands

	Running Commands

	Using Help Command

	Creating New Commands

	File Location

	An Example Command

	run()

	BaseCommand

Running Commands

Commands are run from the command line, in the root directory. The same one that holds the /application
and /system directories. A custom script, spark has been provided that is used to run any of the
cli commands:

> php spark

When called without specifying a command, a simple help page is displayed that also provides a list of
available commands. You should pass the name of the command as the first argument to run that command:

> php spark migrate

Some commands take additional arguments, which should be provided directly after the command, separated by spaces:

> php spark db:seed DevUserSeeder

For all of the commands FSO provides, if you do not provide the required arguments, you will be prompted
for the information it needs to run correctly:

> php spark migrate:version
> Version?

Using Help Command

You can get help about any CLI command using the help command as follows:

> php spark help db:seed

Creating New Commands

You can very easily create new commands to use in your own development. Each class must be in its own file,
and must extend FSO\CLI\BaseCommand, and implement the run() method.

The following properties should be used in order to get listed in CLI commands and to add help functionality to your command:

	($group): a string to describe the group the command is lumped under when listing commands. For example (Database)

	($name): a string to describe the command’s name. For example (migrate:create)

	($description): a string to describe the command. For example (Creates a new migration file.)

	($usage): a string to describe the command usage. For example (migrate:create [migration_name] [Options])

	($arguments): an array of strings to describe each command argument. For example (‘migration_name’ => ‘The migration file name’)

	($options): an array of strings to describe each command option. For example (‘-n’ => ‘Set migration namespace’)

Help description will be automatically generated according to the above parameters.

File Location

Commands must be stored within a directory named Commands. However, that directory can be located anywhere
that the Autoloader can locate it. This could be in /application/Commands, or
a directory that you keep commands in to use in all of your project development, like Acme/Commands.

Note

When the commands are executed, the full FSO cli environment has been loaded, making it
possible to get environment information, path information, and to use any of the tools you would use when making a Controller.

An Example Command

Let’s step through an example command whose only function is to report basic information about the application
itself, for demonstration purposes. Start by creating a new file at /application/Commands/AppInfo.php. It
should contain the following code:

<?php namespace App\Commands;

use FSO\CLI\BaseCommand;

class AppInfo extends BaseCommand
{
 protected $group = 'demo';
 protected $name = 'app:info';
 protected $description = 'Displays basic application information.';

 public function run(array $params)
 {

 }
}

If you run the list command, you will see the new command listed under its own demo group. If you take
a close look, you should see how this works fairly easily. The $group property simply tells it how to organize
this command with all of the other commands that exist, telling it what heading to list it under.

The $name property is the name this command can be called by. The only requirement is that it must not contain
a space, and all characters must be valid on the command line itself. By convention, though, commands are lowercase,
with further grouping of commands being done by using a colon with the command name itself. This helps keep
multiple commands from having naming collisions.

The final property, $description is a short string that is displayed in the list command and should describe
what the command does.

run()

The run() method is the method that is called when the command is being run. The $params array is a list of
any cli arguments after the command name for your use. If the cli string was:

> php spark foo bar baz

Then foo is the command name, and the $params array would be:

$params = ['bar', 'baz'];

This can also be accessed through the CLI library, but this already has your command removed
from the string. These parameters can be used to customize how your scripts behave.

Our demo command might have a run method something like:

public function run(array $params)
{
 CLI::write('PHP Version: '. CLI::color(phpversion(), 'yellow'));
 CLI::write('CI Version: '. CLI::color(FSO::CI_VERSION, 'yellow'));
 CLI::write('APPPATH: '. CLI::color(APPPATH, 'yellow'));
 CLI::write('BASEPATH: '. CLI::color(BASEPATH, 'yellow'));
 CLI::write('ROOTPATH: '. CLI::color(ROOTPATH, 'yellow'));
 CLI::write('Included files: '. CLI::color(count(get_included_files()), 'yellow'));
}

BaseCommand

The BaseCommand class that all commands must extend have a couple of helpful utility methods that you should
be familiar with when creating your own commands. It also has a Logger available at
$this->logger.

Global Functions and Constants

FSO uses provides a few functions and variables that are globally defined, and are available to you at any point.
These do not require loading any additional libraries or helpers.

Page Contents

	Global Functions

	Service Accessors

	Miscellaneous Functions

	Global Constants

	Core Constants

	Time Constants

Global Functions

Service Accessors

Miscellaneous Functions

Global Constants

The following constants are always available anywhere within your application.

Core Constants

Time Constants

控制器

控制器是你整个应用的核心，因为它们决定了 HTTP 请求将被如何处理。

目录

	控制器

	什么是控制器?

	让我们试试看：Hello World！

	方法

	通过 URI 分段向你的方法传递参数

	定义默认控制器

	重映射方法

	私有方法

	将控制器放入子目录中

	构造函数

	包含属性

	Request 对象

	Response 对象

	Logger 对象

	forceHTTPS

	辅助函数

	验证 $_POST 数据

	就这样了！

什么是控制器?

简而言之，一个控制器就是一个类文件，是以一种能够和 URI 关联在一起的方式来命名的。

考虑下面的 URI:

example.com/index.php/blog/

上例中，FSO 将会尝试查询一个名为 Blog.php 的控制器并加载它。

当控制器的名称和 URI 的第一段匹配上时，它将会被加载。

让我们试试看：Hello World！

接下来你会看到如何创建一个简单的控制器，打开你的文本编辑器，新建一个文件 Blog.php ， 然后放入以下代码:

<?php
class Blog extends \FSO\Controller
{
 public function index()
 {
 echo 'Hello World!';
 }
}

然后将文件保存到 /application/controllers/ 目录下。

Important

文件名必须是大写字母开头，如：’Blog.php’ 。

现在使用类似下面的 URL 来访问你的站点:：

example.com/index.php/blog

如果一切正常，你将看到：:

Hello World!

Important

类名必须以大写字母开头。

这是有效的:

<?php
class Blog extends \FSO\Controller {

}

这是 无效 的:

<?php
class blog extends \FSO\Controller {

}

另外，一定要确保你的控制器继承了父控制器类，这样它才能使用父类的方法。

方法

上例中，方法名为 index() 。”index” 方法总是在 URI 的 第二段 为空时被调用。 另一种显示 “Hello World” 消息的方法是:

example.com/index.php/blog/index/

URI 中的第二段用于决定调用控制器中的哪个方法。

让我们试一下，向你的控制器添加一个新的方法:

<?php
class Blog extends \FSO\Controller {

 public function index()
 {
 echo 'Hello World!';
 }

 public function comments()
 {
 echo 'Look at this!';
 }
}

现在，通过下面的 URL 来调用 comments 方法:

example.com/index.php/blog/comments/

你应该能看到你的新消息了。

通过 URI 分段向你的方法传递参数

如果你的 URI 多于两个段，多余的段将作为参数传递到你的方法中。

例如，假设你的 URI 是这样:

example.com/index.php/products/shoes/sandals/123

你的方法将会收到第三段和第四段两个参数（”sandals” 和 “123”）:

<?php
class Products extends \FSO\Controller {

 public function shoes($sandals, $id)
 {
 echo $sandals;
 echo $id;
 }
}

Important

如果你使用了 URI 路由 ，传递到你的方法的参数将是路由后的参数。

定义默认控制器

FSO 可以设置一个默认的控制器，当 URI 没有分段参数时加载，例如当用户直接访问你网站的首页时。 打开 application/config/routes.php 文件，通过下面的参数指定一个默认的控制器:

$routes->setDefaultController('Blog');

其中，“Blog”是你想加载的控制器类名，如果你现在通过不带任何参数的 index.php 访问你的站点，你将看到你的“Hello World”消息。

想要了解更多信息，请参阅 ./source/general/routing.rst 部分文档。

重映射方法

正如上文所说，URI 的第二段通常决定控制器的哪个方法被调用。FSO 允许你使用 _remap() 方法来重写该规则:

public function _remap()
{
 // Some code here...
}

Important

如果你的控制包含一个 _remap() 方法，那么无论 URI 中包含什么参数时都会调用该方法。 它允许你定义你自己的路由规则，重写默认的使用 URI 中的分段来决定调用哪个方法这种行为。

被重写的方法（通常是 URI 的第二段）将被作为参数传递到 _remap() 方法:

public function _remap($method)
{
 if ($method === 'some_method')
 {
 $this->$method();
 }
 else
 {
 $this->default_method();
 }
}

方法名之后的所有其他段将作为 _remap() 方法的第二个参数，它是可选的。这个参数可以使用 PHP 的 call_user_func_array() 函数来模拟 FSO 的默认行为。

例如:

public function _remap($method, ...$params)
{
 $method = 'process_'.$method;
 if (method_exists($this, $method))
 {
 return $this->$method(...$params);
 }
 show_404();
}

私有方法

有时候你可能希望某些方法不能被公开访问，要实现这点，只要简单的将方法声明为 private 或 protected ， 这样这个方法就不能被 URL 访问到了。例如，如果你有一个下面这个方法:

protected function utility()
{
 // some code
}

使用下面的 URL 尝试访问它，你会发现是无法访问的:

example.com/index.php/blog/utility/

将控制器放入子目录中

如果你正在构建一个比较大的应用，那么将控制器放到子目录下进行组织可能会方便一点。FSO 也可以实现这一点。

你只需要简单的在 application/controllers/ 目录下创建新的目录，并将控制器文件放到子目录下。

Note

当使用该功能时，URI 的第一段必须指定目录，例如，假设你在如下位置有一个控制器:

application/controllers/products/Shoes.php

为了调用该控制器，你的 URI 应该像下面这样:

example.com/index.php/products/shoes/show/123

每个子目录包含一个默认控制器，将在 URL 只包含子目录的时候被调用。默认控制器在 application/Config/Routes.php 中定义。

你也可以使用 FSO 的 ./source/general/routing.rst 功能来重定向 URI。

构造函数

如果你打算在你的控制器中使用构造函数，你 必须 将下面这行代码放在里面:：

parent::__construct(…$params);

原因是你的构造函数将会覆盖父类的构造函数，所以我们要手工的调用它。

例如:

<?php
class Blog extends \FSO\Controller
{
 public function __construct(...$params)
 {
 parent::__construct(...$params);

 // Your own constructor code
 }
}

如果你需要在你的类被初始化时设置一些默认值，或者进行一些默认处理，构造函数将很有用。 构造函数没有返回值，但是可以执行一些默认操作。

包含属性

你创建的每一个 controller 都应该继承 FSO\Controller 类。这个类提供了适合所有控制器的几个属性。

Request 对象

$this->request 作为应用程序的主要属性 ./source/libraries/request.rst 是可以一直被使用的类属性。

Response 对象

$this->response 作为应用程序的主要属性 ./source/libraries/response.rst 是可以一直被使用的类属性。

Logger 对象

$this->logger 类实例 ./source/general/logging.rst 是可以一直被使用的类属性。

forceHTTPS

一种强制通过 HTTPS 访问方法的便捷方法，在所有控制器中都是可用的:

if (! $this->request->isSecure())
{
 $this->forceHTTPS();
}

默认情况下，在支持 HTTP 严格传输安全报头的现代浏览器中，此调用应强制浏览器将非 HTTPS 调用转换为一年的 HTTPS 调用。你可以通过将持续时间（以秒为单位）作为第一个参数来修改。

if (! $this->request->isSecure())
{
 $this->forceHTTPS(31536000); // one year
}

Note

你可以使用更多全局变量和函数 ./source/general/common_functions.rst ，包括 年、月等等。

辅助函数

你可以定义一个辅助文件数组作为类属性。每当控制器被加载时，
这些辅助文件将自动加载到内存中，这样就可以在控制器的任何地方使用它们的方法。:

class MyController extends \FSO\Controller
{
 protected $helpers = ['url', 'form'];
}

验证 $_POST 数据

控制器还提供了一个简单方便的方法来验证 $_POST 数据，将一组规则作为第一个参数进行验证，如果验证不通过，可以选择显示一组自定义错误消息。你可以通过 $this->request 这个用法获取 POST 数据。 Validation Library docs 是有关规则和消息数组的格式以及可用规则的详细信息。

public function updateUser(int $userID)
{
 if (! $this->validate([
 'email' => "required|is_unique[users.email,id,{$userID}]",
 'name' => 'required|alpha_numeric_spaces'
]))
 {
 return view('users/update', [
 'errors' => $this->errors
]);
 }

 // do something here if successful...
}

如果你觉得在配置文件中保存规则更简单，你可以通过在 Config\Validation.php 中定义代替 $rules 数组

public function updateUser(int $userID)
{
 if (! $this->validate('userRules'))
 {
 return view('users/update', [
 'errors' => $this->errors
]);
 }

 // do something here if successful...
}

Note

验证也可以在模型中自动处理。你可以在任何地方处理，你会发现控制器中的一些情况比模型简单，反之亦然。

就这样了！

OK，总的来说，这就是关于控制器的所有内容了。

Creating Core System Classes

Every time FSO runs there are several base classes that are initialized automatically as part of the core
framework. It is possible, however, to swap any of the core system classes with your own version or even just extend
the core versions.

Most users will never have any need to do this, but the option to replace or extend them does exist for those
who would like to significantly alter the FSO core.

Note

Messing with a core system class has a lot of implications, so make sure you know what you are doing before
attempting it.

System Class List

The following is a list of the core system files that are invoked every time FSO runs:

	Config\Services

	FSO\Autoloader\Autoloader

	FSO\Config\DotEnv

	FSO\Controller

	FSO\Debug\Exceptions

	FSO\Debug\Timer

	FSO\Events\Events

	FSO\HTTP\CLIRequest (if launched from command line only)

	FSO\HTTP\IncomingRequest (if launched over HTTP)

	FSO\HTTP\Request

	FSO\HTTP\Response

	FSO\HTTP\Message

	FSO\Log\Logger

	FSO\Log\Handlers\BaseHandler

	FSO\Log\Handlers\FileHandler

	FSO\Router\RouteCollection

	FSO\Router\Router

	FSO\Security\Security

	FSO\View\View

	FSO\View\Escaper

Replacing Core Classes

To use one of your own system classes instead of a default one, ensure that the Autoloader
can find your class, that your new class extends the appropriate interface, and modify the appropriate
Service to load your class in place of the core class.

For example, if you have a new App\Libraries\RouteCollection class that you would like to use in place of
the core system class, you would create your class like this:

namespace App\Libraries;

class RouteCollection implements \FSO\Router\RouteCollectionInterface
{

}

Then you would modify the routes service to load your class instead:

public static function routes($getShared = false)
{
 if (! $getShared)
 {
 return new \App\Libraries\RouteCollection();
 }

 return self::getSharedInstance('routes');
}

Extending Core Classes

If all you need to is add some functionality to an existing library - perhaps add a method or two - then it’s overkill
to recreate the entire library. In this case it’s better to simply extend the class. Extending the class is nearly
identical to replacing a class with a one exception:

	The class declaration must extend the parent class.

For example, to extend the native RouteCollection class, you would declare your class with:

class RouteCollection extends \FSO\Router\RouteCollection
{

}

If you need to use a constructor in your class make sure you extend the parent constructor:

class RouteCollection implements \FSO\Router\RouteCollection
{
 public function __construct()
 {
 parent::__construct();
 }
}

Tip: Any functions in your class that are named identically to the methods in the parent class will be used
instead of the native ones (this is known as “method overriding”). This allows you to substantially alter the FSO core.

If you are extending the Controller core class, then be sure to extend your new class in your application controller’s
constructors:

class Home extends App\BaseController {

}

Debugging Your Application

Table of Contents

	Debugging Your Application

	Replace var_dump

	Enabling Kint

	Using Kint

	The Debug Toolbar

	Enabling the Toolbar

	Setting Benchmark Points

	Creating Custom Collectors

Replace var_dump

While using XDebug and a good IDE can be indispensable to debug your application, sometimes a quick var_dump() is
all you need. FSO makes that even better by bundling in the excellent Kint [https://raveren.github.io/kint/]
debugging tool for PHP. This goes way beyond your usual tool, providing many alternate pieces of data, like formatting
timestamps into recognizable dates, showing you hexcodes as colors, display array data like a table for easy reading,
and much, much more.

Enabling Kint

By default, Kint is enabled in development and testing environments only. This can be altered by modifying
the $useKint value in the environment configuration section of the main index.php file:

$useKint = true;

Using Kint

d()

The d() method dumps all of the data it knows about the contents passed as the only parameter to the screen, and
allows the script to continue executing:

d($_SERVER);

ddd()

This method is identical to d(), except that it also dies() and no further code is executed this request.

trace()

This provides a backtrace to the current execution point, with Kint’s own unique spin:

Kint::trace();

For more information, see Kint’s page [https://raveren.github.io/kint/].

The Debug Toolbar

The Debug Toolbar provides at-a-glance information about the current page request, including benchmark results,
queries you have ran, request and response data, and more. This can all prove very useful during development
to help you debug and optimize.

Note

The Debug Toolbar is still under construction with several planned features not yet implemented.

Enabling the Toolbar

The toolbar is enabled by default in any environment _except_ production. It will be shown whenever the
constant CI_DEBUG is defined and it’s value is positive. This is defined in the boot files (i.e.
application/Config/Boot/development.php) and can be modified there to determine what environments it shows
itself in.

The toolbar itself is displayed as an After Filter. You can stop it from ever
running by removing it from the $globals property of application/Config/Filters.php.

Choosing What to Show

FSO ships with several Collectors that, as the name implies, collect data to display on the toolbar. You
can easily make your own to customize the toolbar. To determine which collectors are shown, again head over to
the App configuration file:

public $toolbarCollectors = [
 'FSO\Debug\Toolbar\Collectors\Timers',
 'FSO\Debug\Toolbar\Collectors\Database',
 'FSO\Debug\Toolbar\Collectors\Logs',
 'FSO\Debug\Toolbar\Collectors\Views',
 'FSO\Debug\Toolbar\Collectors\Cache',
 'FSO\Debug\Toolbar\Collectors\Files',
 'FSO\Debug\Toolbar\Collectors\Routes',
];

Comment out any collectors that you do not want to show. Add custom Collectors here by providing the fully-qualified
class name. The exact collectors that appear here will affect which tabs are shown, as well as what information is
shown on the Timeline.

The Collectors that ship with FSO are:

	Timers collects all of the benchmark data, both by the system and by your application.

	Database Displays a list of queries that all database connections have performed, and their execution time.

	Logs Any information that was logged will be displayed here. In long-running systems, or systems with many items being logged, this can cause memory issues and should be disabled.

	Views Displays render time for views on the timeline, and shows any data passed to the views on a separate tab.

	Cache Will display information about cache hits and misses, and execution times.

	Files displays a list of all files that have been loaded during this request.

	Routes displays information about the current route and all routes defined in the system.

Setting Benchmark Points

In order for the Profiler to compile and display your benchmark data you must name your mark points using specific syntax.

Please read the information on setting Benchmark points in the Benchmark Library page.

Creating Custom Collectors

Creating custom collectors is a straightforward task. You create a new class, fully-namespaced so that the autoloader
can locate it, that extends FSO\Debug\Toolbar\Collectors\BaseCollector. This provides a number of methods
that you can override, and has four required class properties that you must correctly set depending on how you want
the Collector to work

<?php namespace MyNamespace;

use FSO\Debug\Toolbar\Collectors\BaseCollector;

class MyCollector extends BaseCollector
{
 protected $hasTimeline = false;

 protected $hasTabContent = false;

 protected $hasVarData = false;

 protected $title = '';
}

$hasTimeline should be set to true for any Collector that wants to display information in the toolbar’s
timeline. If this is true, you will need to implement the formatTimelineData() method to format and return the
data for display.

$hasTabContent should be true if the Collector wants to display its own tab with custom content. If this
is true, you will need to provide a $title, implement the display() method to render out tab’s contents,
and might need to implement the getTitleDetails() method if you want to display additional information just
to the right of the tab content’s title.

$hasVarData should be true if this Collector wants to add additional data to the Vars tab. If this
is true, you will need to implement the getVarData() method.

$title is displayed on open tabs.

Displaying a Toolbar Tab

To display a toolbar tab you must:

	Fill in $title with the text displayed as both the toolbar title and the tab header.

	Set $hasTabContent to true.

	Implement the display() method.

	Optionally, implement the getTitleDetails() method.

The display() creates the HTML that is displayed within the tab itself. It does not need to worry about
the title of the tab, as that is automatically handled by the toolbar. It should return a string of HTML.

The getTitleDetails() method should return a string that is displayed just to the right of the tab’s title.
it can be used to provide additional overview information. For example, the Database tab displays the total
number of queries across all connections, while the Files tab displays the total number of files.

Providing Timeline Data

To provide information to be displayed in the Timeline you must:

	Set $hasTimeline to true.

	Implement the formatTimelineData() method.

The formatTimelineData() method must return an array of arrays formatted in a way that the timeline can use
it to sort it correctly and display the correct information. The inner arrays must include the following information:

$data[] = [
 'name' => '', // Name displayed on the left of the timeline
 'component' => '', // Name of the Component listed in the middle of timeline
 'start' => 0.00, // start time, like microtime(true)
 'duration' => 0.00 // duration, like mircrotime(true) - microtime(true)
];

Providing Vars

To add data to the Vars tab you must:

	Set $hasVarData to true

	Implement getVarData() method.

The getVarData() method should return an array containing arrays of key/value pairs to display. The name of the
outer array’s key is the name of the section on the Vars tab:

$data = [
 'section 1' => [
 'foo' => 'bar',
 'bar' => 'baz'
],
 'section 2' => [
 'foo' => 'bar',
 'bar' => 'baz'
]
];

Handling Multiple Environments

Developers often desire different system behavior depending on whether
an application is running in a development or production environment.
For example, verbose error output is something that would be useful
while developing an application, but it may also pose a security issue
when “live”. In development environments, you might want additional
tools loaded that you don’t in production environments, etc.

The ENVIRONMENT Constant

By default, FSO comes with the environment constant set to use
the value provided in $_SERVER['CI_ENVIRONMENT'], otherwise defaulting to
‘production’. This can be set in several ways depending on your server setup.

.env

The simplest method to set the variable is in your .env file:

CI_ENVIRONMENT = development

Apache

This server variable can be set in your .htaccess file, or Apache
config using SetEnv [https://httpd.apache.org/docs/2.2/mod/mod_env.html#setenv].

SetEnv CI_ENVIRONMENT development

nginx

Under nginx, you must pass the environment variable through the fastcgi_params
in order for it to show up under the $_SERVER variable. This allows it to work on the
virtual-host level, instead of using env to set it for the entire server, though that
would work fine on a dedicated server. You would then modify your server config to something
like:

server {
 server_name localhost;
 include conf/defaults.conf;
 root /var/www;

 location ~* "\.php$" {
 fastcgi_param CI_ENVIRONMENT "production";
 include conf/fastcgi-php.conf;
 }
}

Alternative methods are available for nginx and other servers, or you can
remove this logic entirely and set the constant based on the server’s IP address
(for instance).

In addition to affecting some basic framework behavior (see the next
section), you may use this constant in your own development to
differentiate between which environment you are running in.

Boot Files

FSO requires that a PHP script matching the environment’s name is located
under APPPATH/Config/Boot. These files can contain any customizations that
you would like to make for your environment, whether it’s updating the error display
settings, loading addtional developer tools, or anything else. These are
automatically loaded by the system. The following files are already created in
a fresh install:

	development.php

	production.php

	testing.php

Effects On Default Framework Behavior

There are some places in the FSO system where the ENVIRONMENT
constant is used. This section describes how default framework behavior
is affected.

Error Reporting

Setting the ENVIRONMENT constant to a value of ‘development’ will cause
all PHP errors to be rendered to the browser when they occur.
Conversely, setting the constant to ‘production’ will disable all error
output. Disabling error reporting in production is a
good security practice.

Configuration Files

Optionally, you can have FSO load environment-specific
configuration files. This may be useful for managing things like
differing API keys across multiple environments. This is described in
more detail in the Handling Different Environments section of the
Working with Configuration Files documentation.

错误处理

FSO 通过 SPL collection [http://php.net/manual/en/spl.exceptions.php] 和一些框架内自定义异常来生成系统错误报告。错误处理的行为取决于你部署环境的设置，当一个错误或异常被抛出时，只要应用不是在 production 环境下运行，就会默认展示出详细的错误报告。在这种情况下，应为用户显示一个更为通用的信息来保证最佳的用户体验。

使用异常处理

本节为新手程序员或没有多少异常处理使用经验的开发人员做一个简单概述。

异常处理是在异常被”抛出”的时候产生的事件。它会暂停当前脚本的执行，并将捕获到的异常发送到错误处理程序后显示适当的错误提示页:

throw new \Exception("Some message goes here");

如果你调用了一个可能会产生异常的方法，你可以使用 try/catch block 去捕获异常:

try {
 $user = $userModel->find($id);
}
catch (\Exception $e)
{
 die($e->getMessage());
}

如果 $userModel 抛出了一个异常，那么它就会被捕获，并执行 catch 代码块内的语句。在这个样例中，脚本终止并输出了 UserModel 定义的错误信息。

在这个例子中，我们可以捕捉任意类型的异常。如果我们仅仅想要监视特定类型的异常，比如 UnknownFileException，我们就可以把它在 catch 参数中指定出来。这样一来，其它异常和非监视类型子类的异常都会被传递给错误处理程序:

catch (\FSO\UnknownFileException $e)
{
 // do something here...
}

这便于你自己进行错误处理或是在脚本结束前做好清理工作。如果你希望错误处理程序正常运行，可以在 catch 语句块中再抛出一个新的异常。

catch (FSOUnknownFileException $e)
{

// do something here…

throw new RuntimeException($e->getMessage(), $e->getCode(), $e);

}

配置

默认情况下，FSO 将在 development 和 testing 环境中展示所有的错误，而在 production 环境中不展示任何错误。你可以在主 index.php 文件的顶部找到环境配置部分来更改此设置。

Important

如果发生错误，禁用错误报告将不会阻止日志的写入。

自定义异常

下列是可用的自定义异常:

PageNotFoundException

这是用来声明 404 ，页面无法找到的错误。当异常被抛出时，系统将显示后面的错误模板 /application/views/errors/html/error_404.php。你应为你的站点自定义所有错误视图。如果在 Config/Routes.php 中，你指定了404 的重写规则，那么它将代替标准的 404 页来被调用:

if (! $page = $pageModel->find($id))
{
 throw new \FSO\PageNotFoundException();
}

你可以通过异常传递消息，它将在 404 页默认消息位置被展示。

ConfigException

当配置文件中的值无效或 class 类不是正确类型等情况时，请使用此异常:

throw new \FSO\ConfigException();

它将 HTTP 状态码置为 500，退出状态码被置为 3.

UnknownFileException

在文件没有被找到时，请使用此异常:

throw new \FSO\UnknownFileException();

它将 HTTP 状态码置为 500，退出状态码被置为 4.

UnknownClassException

当一个类没有被找到时，请使用此异常:

throw new \FSO\UnknownClassException($className);

它将 HTTP 状态码置为 500，退出状态码被置为 5.

UnknownMethodException

当一个类的方法不存在时，请使用此异常:

throw new \FSO\UnknownMethodException();

它将 HTTP 状态码置为 500，退出状态码被置为 6.

UserInputException

当用户的输入无效时，请使用此异常:

throw new \FSO\UserInputException();

它将 HTTP 状态码置为 500，退出状态码被置为 7.

DatabaseException

当产生如连接不能建立或连接临时丢失的数据库错误时，请使用此异常:

throw new \FSO\DatabaseException();

它将 HTTP 状态码置为 500，退出状态码被置为 8.

Events - Extending the Framework Core

FSO’s Events feature provides a means to tap into and modify the inner workings of the framework without hacking
core files. When FSO runs it follows a specific execution process. There may be instances, however, when you’d
like to cause some action to take place at a particular stage in the execution process. For example, you might want to run
a script right before your controllers get loaded, or right after, or you might want to trigger one of your own scripts
in some other location.

Events work on a publish/subscribe pattern, where an event, is triggered at some point during the script execution.
Other scripts can “subscribe” to that event by registering with the Events class to let it know they want to perform an
action when that event is triggered.

Enabling Events

Events are always enabled, and are available globally.

Defining an Event

Most events are defined within the application/Config/Events.php file. You can subscribe an action to an event with
the Events class’ on() method. The first parameter is the name of the event to subscribe to. The second parameter is
a callable that will be run when that event is triggered:

use FSO\Events\Events;

Events::on('pre_system', ['MyClass', 'MyFunction']);

In this example, whenever the pre_controller event is executed, an instance of MyClass is created and the
MyFunction method is ran. Note that the second parameter can be any form of
callable [http://php.net/manual/en/function.is-callable.php] that PHP recognizes:

// Call a standalone function
Events::on('pre_system', 'some_function');

// Call on an instance method
$user = new User();
Events::on('pre_system', [$user, 'some_method']);

// Call on a static method
Events::on('pre_system', 'SomeClass::someMethod');

// Use a Closure
Events::on('pre_system', function(...$params)
{
 . . .
});

Setting Priorities

Since multiple methods can be subscribed to a single event, you will need a way to define in what order those methods
are called. You can do this by passing a priority value as the third parameter of the on() method. Lower values
are executed first, with a value of 1 having the highest priority, and there being no limit on the lower values:

Events::on('post_controller_constructor', 'some_function', 25);

Any subscribers with the same priority will be executed in the order they were defined.

Three constants are defined for your use, that set some helpful ranges on the values. You are not required to use these
but you might find they aid readability:

define('EVENT_PRIORITY_LOW', 200);
define('EVENT_PRIORITY_NORMAL', 100);
define('EVENT_PRIORITY_HIGH', 10);

Once sorted, all subscribers are executed in order. If any subscriber returns a boolean false value, then execution of
the subscribers will stop.

Publishing your own Events

The Events library makes it simple for you to create events in your own code, also. To use this feature, you would simply
need to call the trigger() method on the Events class with the name of the event:

\FSO\Events\Events::trigger('some_event');

You can pass any number of arguments to the subscribers by adding them as additional parameters. Subscribers will be
given the arguments in the same order as defined:

\FSO\Events\Events::trigger('some_events', $foo, $bar, $baz);

Events::on('some_event', function($foo, $bar, $baz) {
 ...
});

Event Points

The following is a list of available event points within the FSO core code:

	pre_system Called very early during system execution. Only the benchmark and events class have been loaded at this point. No routing or other processes have happened.

	post_controller_constructor Called immediately after your controller is instantiated, but prior to any method calls happening.

	post_system Called after the final rendered page is sent to the browser, at the end of system execution after the finalized data is sent to the browser.

Controller Filters

Controller Filters allow you to perform actions either before or after the controllers execute. Unlike events,
you can very simply choose which URI’s in your application have the filters applied to them. Incoming filters may
modify the Request, while after filters can act on and even modify the Response, allowing for a lot of flexibility
and power. Some common examples of tasks that might be performed with filters are:

	Performing CSRF protection on the incoming requests

	Restricting areas of your site based upon their Role

	Perform rate limiting on certain endpoints

	Display a “Down for Maintenance” page

	Perform automatic content negotiation

	and more..

Creating a Filter

Filters are simple classes that implement FSO\Filters\FilterInterface. They contain two methods: before()
and after(), which contain the code that will be ran before and after the controller, respectively. Your class
must contain both methods, but may leave the methods empty if they are not needed. A skeleton filter class looks like:

<?php namespace App\Filters;

use FSO\HTTP\RequestInterface;
use FSO\HTTP\ResponseInterface;
use FSO\Filters\FilterInterface;

class MyFilter implements FilterInterface
{
 public function before(RequestInterface $request)
 {
 // Do something here
 }

 //--

 public function after(RequestInterface $request, ResponseInterface $response)
 {
 // Do something here
 }
}

Before Filters

From any filter, you can return the $request object and it will replace the current Request, allowing you
to make changes that will still be present when the controller executes.

Since before filters are executed prior to your controller being executed, you may at times want to stop the
actions in the controller from happening. You can do this by passing back anything that is not the request object.
This is typically used to peform redirects, like in this example:

public function before(RequestInterface $request)
{
 $auth = service('auth');

 if (! $auth->isLoggedIn())
 {
 return redirect('login');
 }
}

If a Response instance is returned, the Response will be sent back to the client and script execution will stop.
This can be useful for implementing rate limiting for API’s. See application/Filters/Throttle.php for an
example.

After Filters

After filters are nearly identical to before filters, except that you can only return the $response object,
and you cannot stop script execution. This does allow you to modify the final output, or simply do something with
the final output. This could be used to ensure certain security headers were set the correct way, or to cache
the final output, or even to filter the final output with a bad words filter.

Configuring Filters

Once you’ve created your filters, you need to configure when they get run. This is done in application/Config/Filters.php.
This file contains four properties that allow you to configure exactly when the filters run.

$aliases

The $aliases array is used to associate a simple name with one or more fully-qualified class names that are the
filters to run:

public $aliases = [
 'csrf' => \App\Filters\CSRF::class
];

Aliases are mandatory and if you try to use a full class name later, the system will throw an error. Defining them
in this way makes it simple to switch out the class used. Great for when you decided you need to change to a
different authentication system since you only change the filter’s class and you’re done.

You can combine multiple filters into one alias, making complex sets of filters simple to apply:

public $aliases = [
 'apiPrep' => [
 \App\Filters\Negotiate::class,
 \App\Filters\ApiAuth::class
]
];

You should define as many aliases as you need.

$globals

The second section allows you to define any filters that should be applied to every request made by the framework.
You should take care with how many you use here, since it could have performance implications to have too many
run on every request. Filters can be specified by adding their alias to either the before or after array:

public $globals = [
 'before' => [
 'csrf'
],
 'after' => []
];

There are times where you want to apply a filter to almost every request, but have a few that should be left alone.
One common example is if you need to exclude a few URI’s from the CSRF protection filter to allow requests from
third-party websites to hit one or two specific URI’s, while keeping the rest of them protected. To do this, add
an array with the ‘except’ key and a uri to match as the value alongside the alias:

public $globals = [
 'before' => [
 'csrf' => ['except' => 'api/*']
],
 'after' => []
];

Any place you can use a URI in the filter settings, you can use a regular expression or, like in this example, use
an asterisk for a wildcard that will match all characters after that. In this example, any URL’s starting with api/
would be exempted from CSRF protection, but the site’s forms would all be protected. If you need to specify multiple
URI’s you can use an array of URI patterns:

public $globals = [
 'before' => [
 'csrf' => ['except' => ['foo/*', 'bar/*']]
],
 'after' => []
];

$methods

You can apply filters to all requests of a certain HTTP method, like POST, GET, PUT, etc. In this array, you would
specify the method name in lowercase. It’s value would be an array of filters to run. Unlike the $globals or the
$filters properties, these will only run as before filters:

public $methods = [
 'post' => ['foo', 'bar'],
 'get' => ['baz']
]

In addition to the standard HTTP methods, this also supports two special cases: ‘cli’, and ‘ajax’. The names are
self-explanatory here, but ‘cli’ would apply to all requests that were run from the command line, while ‘ajax’
would apply to every AJAX request.

$filters

This property is an array of filter aliases. For each alias you can specify before and after arrays that contain
a list of URI patterns that filter should apply to:

public filters = [
 'foo' => ['before' => ['admin/*'], 'after' => ['users/*']],
 'bar' => ['before' => ['api/*', 'admin/*']]
];

Provided Filters

To be determined.

Helper Functions

Helpers, as the name suggests, help you with tasks. Each helper file is
simply a collection of functions in a particular category. There are URL
Helpers, that assist in creating links, there are Form Helpers that help
you create form elements, Text Helpers perform various text formatting
routines, Cookie Helpers set and read cookies, File Helpers help you
deal with files, etc.

Unlike most other systems in FSO, Helpers are not written in an
Object Oriented format. They are simple, procedural functions. Each
helper function performs one specific task, with no dependence on other
functions.

FSO does not load Helper Files by default, so the first step in
using a Helper is to load it. Once loaded, it becomes globally available
in your controller and
views.

Helpers are typically stored in your system/Helpers, or
application/Helpers directory. FSO will look first in your
application/Helpers directory. If the directory does not exist or the
specified helper is not located there CI will instead look in your
global system/Helpers/ directory.

Loading a Helper

Loading a helper file is quite simple using the following method:

helper('name');

Where name is the file name of the helper, without the .php file
extension or the “helper” part.

For example, to load the URL Helper file, which is named
url_helper.php, you would do this:

helper('url');

A helper can be loaded anywhere within your controller methods (or
even within your View files, although that’s not a good practice), as
long as you load it before you use it. You can load your helpers in your
controller constructor so that they become available automatically in
any function, or you can load a helper in a specific function that needs
it.

Note

The Helper loading method above does not return a value, so
don’t try to assign it to a variable. Just use it as shown.

Loading from Non-standard Locations

Helpers can be loaded from directories outside of application/Helpers and
system/Helpers, as long as that path can be found through a namespace that
has been setup within the PSR-4 section of the Autoloader config file.
You would prefix the name of the Helper with the namespace that it can be located
in. Within that namespaced directory, the loader expects it to live within a
sub-directory named Helpers. An example will help understand this.

For this example, assume that we have grouped together all of our Blog-related
code into its own namespace, Example\Blog. The files exist on our server at
/Modules/Blog/. So, we would put our Helper files for the blog module in
/Modules/Blog/Helpers/. A blog_helper file would be at
/Modules/Blog/Helpers/blog_helper.php. Within our controller we could
use the following command to load the helper for us:

helper('Modules\Blog\blog');

Note

The functions within files loaded this way are not truly namespaced.
The namespace is simply used as a convenient way to locate the files.

Using a Helper

Once you’ve loaded the Helper File containing the function you intend to
use, you’ll call it the way you would a standard PHP function.

For example, to create a link using the anchor() function in one of
your view files you would do this:

<?php echo anchor('blog/comments', 'Click Here');?>

Where “Click Here” is the name of the link, and “blog/comments” is the
URI to the controller/method you wish to link to.

“Extending” Helpers

TODO: Determine how these can be extended… namespaces, etc?

To “extend” Helpers, create a file in your application/helpers/ folder
with an identical name to the existing Helper, but prefixed with MY_
(this item is configurable. See below.).

If all you need to do is add some functionality to an existing helper -
perhaps add a function or two, or change how a particular helper
function operates - then it’s overkill to replace the entire helper with
your version. In this case it’s better to simply “extend” the Helper.

Note

The term “extend” is used loosely since Helper functions are
procedural and discrete and cannot be extended in the traditional
programmatic sense. Under the hood, this gives you the ability to
add to or or to replace the functions a Helper provides.

For example, to extend the native Array Helper you’ll create a file
named application/helpers/MY_array_helper.php, and add or override
functions:

// any_in_array() is not in the Array Helper, so it defines a new function
function any_in_array($needle, $haystack)
{
 $needle = is_array($needle) ? $needle : array($needle);

 foreach ($needle as $item)
 {
 if (in_array($item, $haystack))
 {
 return TRUE;
 }
 }

 return FALSE;
}

// random_element() is included in Array Helper, so it overrides the native function
function random_element($array)
{
 shuffle($array);
 return array_pop($array);
}

Now What?

In the Table of Contents you’ll find a list of all the available Helper
Files. Browse each one to see what they do.

系统监控

	Airflow介绍

Logging Information

You can log information to the local log files by using the log_message() method. You must supply
the “level” of the error in the first parameter, indicating what type of message it is (debug, error, etc).
The second parameter is the message itself:

if ($some_var == '')
{
 log_message('error', 'Some variable did not contain a value.');
}

There are eight different log levels, matching to the RFC 5424 [http://tools.ietf.org/html/rfc5424] levels, and they are as follows:

	debug - Detailed debug information.

	info - Interesting events in your application, like a user logging in, logging SQL queries, etc.

	notice - Normal, but significant events in your application.

	warning - Exceptional occurrences that are not errors, like the user of deprecated APIs, poor use of an API, or other undesirable things that are not necessarily wrong.

	error - Runtime errors that do not require immediate action but should typically be logged and monitored.

	critical - Critical conditions, like an application component not available, or an unexpected exception.

	alert - Action must be taken immediately, like when an entire website is down, the database unavailable, etc.

	emergency - The system is unusable.

The logging system does not provide ways to alert sysadmins or webmasters about these events, they solely log
the information. For many of the more critical event levels, the logging happens automatically by the
Error Handler, described above.

Configuration

You can modify which levels are actually logged, as well as assign different Loggers to handle different levels, within
the /application/Config/Logger.php configuration file.

The threshold value of the config file determines which levels are logged across your application. If any levels
are requested to be logged by the application, but the threshold doesn’t allow them to log currently, they will be
ignored. The simplest method to use is to set this value to the minimum level that you want to have logged. For example,
if you want to log debug messages, and not information messages, you would set the threshold to 5. Any log requests with
a level of 5 or less (which includes runtime errors, system errors, etc) would be logged and info, notices, and warnings
would be ignored:

public $threshold = 5;

A complete list of levels and their corresponding threshold value is in the configuration file for your reference.

You can pick and choose the specific levels that you would like logged by assigning an array of log level numbers
to the threshold value:

// Log only debug and info type messages
public $threshold = [5, 8];

Using Multiple Log Handlers

The logging system can support multiple methods of handling logging running at the same time. Each handler can
be set to handle specific levels and ignore the rest. Currently, two handlers come with a default install:

	File Handler is the default handler and will create a single file for every day locally. This is the
recommended method of logging.

	ChromeLogger Handler If you have the ChromeLogger extension [https://craig.is/writing/chrome-logger]
installed in the Chrome web browser, you can use this handler to display the log information in
Chrome’s console window.

The handlers are configured in the main configuration file, in the $handlers property, which is simply
an array of handlers and their configuration. Each handler is specified with the key being the fully
name-spaced class name. The value will be an array of varying properties, specific to each handler.
Each handler’s section will have one property in common: handles, which is an array of log level
__names__ that the handler will log information for.

public $handlers = [

 //--
 // File Handler
 //--

 'FSO\Log\Handlers\FileHandler' => [

 'handles' => ['critical', 'alert', 'emergency', 'debug', 'error', 'info', 'notice', 'warning'],
]
];

Modifying the Message With Context

You will often want to modify the details of your message based on the context of the event being logged.
You might need to log a user id, an IP address, the current POST variables, etc. You can do this by use
placeholders in your message. Each placeholder must be wrapped in curly braces. In the third parameter,
you must provide an array of placeholder names (without the braces) and their values. These will be inserted
into the message string:

// Generates a message like: User 123 logged into the system from 127.0.0.1
$info = [
 'id' => $user->id,
 'ip_address' => $this->request->ip_address()
];

log_message('info', 'User {id} logged into the system from {ip_address}', $info);

If you want to log an Exception or an Error, you can use the key of ‘exception’, and the value being the
Exception or Error itself. A string will be generated from that object containing the error message, the
file name and line number. You must still provide the exception placeholder in the message:

try
{
 ... Something throws error here
}
catch (\Exception #e)
{
 log_message('error', '[ERROR] {exception}', ['exception' => $e]);
}

Several core placeholders exist that will be automatically expanded for you based on the current page request:

	Placeholder

	Inserted value

	{post_vars}

	$_POST variables

	{get_vars}

	$_GET variables

	{session_vars}

	$_SESSION variables

	{env}

	Current environment name, i.e. development

	{file}

	The name of file calling the logger

	{line}

	The line in {file} where the logger was called

	{env:foo}

	The value of ‘foo’ in $_ENV

Using Third-Party Loggers

You can use any other logger that you might like as long as it extends from either
Psr\Log\LoggerInterface and is PSR3 [http://www.php-fig.org/psr/psr-3/] compatible. This means
that you can easily drop in use for any PSR3-compatible logger, or create your own.

You must ensure that the third-party logger can be found by the system, by adding it to either
the /application/Config/Autoload.php configuration file, or through another autoloader,
like Composer. Next, you should modify /application/Config/Services.php to point the logger
alias to your new class name.

Now, any call that is done through the log_message() function will use your library instead.

LoggerAware Trait

If you would like to implement your libraries in a framework-agnostic method, you can use
the FSO\Log\LoggerAwareTrait which implements the setLogger() method for you.
Then, when you use your library under different environments for frameworks, your library should
still be able to log as it would expect, as long as it can find a PSR3 compatible logger.

Managing your Applications

By default it is assumed that you only intend to use FSO to
manage one application, which you will build in your application/
directory. It is possible, however, to have multiple sets of
applications that share a single FSO installation, or even to
rename or relocate your application directory.

Renaming the Application Directory

If you would like to rename your application directory you may do so
as long as you open your main index.php file and set its name using
the $application_directory variable:

$application_directory = 'application';

Relocating your Application Directory

It is possible to move your application directory to a different
location on your server than your web root. To do so open
your main index.php and set a full server path in the
$application_directory variable:

$application_directory = '/path/to/your/application';

Running Multiple Applications with one FSO Installation

If you would like to share a common FSO installation to manage
several different applications simply put all of the directories located
inside your application directory into their own sub-directory.

For example, let’s say you want to create two applications, named “foo”
and “bar”. You could structure your application directories like this:

applications/foo/
applications/foo/config/
applications/foo/controllers/
applications/foo/libraries/
applications/foo/models/
applications/foo/views/
applications/bar/
applications/bar/config/
applications/bar/controllers/
applications/bar/libraries/
applications/bar/models/
applications/bar/views/

To select a particular application for use requires that you open your
main index.php file and set the $application_directory variable. For
example, to select the “foo” application for use you would do this:

$application_directory = 'applications/foo';

Note

Each of your applications will need its own index.php file
which calls the desired application. The index.php file can be named
anything you want.

Code Modules

FSO supports a very simple form of modularization to help you create reusable code. Modules are typically
centered around a specific subject, and can be thought of as mini-applications within your larger application. Any
of the standard file types within the framework are supported, like controllers, models, views, config files, helpers,
language files, etc. Modules may contain as few, or as many, of these as you like.

Page Contents

	Code Modules

	Namespaces

	Working With Files

	Routes

	Controllers

	Config Files

	Migrations

	Seeds

	Helpers

	Language Files

	Libraries

	Models

	Views

Namespaces

The core element of the modules functionality comes from the PSR4-compatible autoloading
that FSO uses. While any code can use the PSR4 autoloader and namespaces, the only way to take full advantage of
modules is to namespace your code and add it to application/Config/Autoload.php, in the psr4 section.

For example, let’s say we want to keep a simple blog module that we can re-use between components. We might create
folder with our company name, Acme, to store all of our modules within. We will put it right alongside our application
directory in the main project root:

/acme // New modules directory
/application
/public
/system
/tests
/writable

Open /applicationConfigAutoload.php and add the Acme namespace to the psr4 array property:

public $psr4 = [
 'Acme' => ROOTPATH.'acme'
];

Now that this is setup we can access any file within the acme folder through the Acme namespace. This alone
takes care of 80% of what is needed for modules to work, so you should be sure to familiarize yourself within namespaces
and become comfortable with their use. A number of the file types will be scanned for automatically through all defined
namespaces here, making this crucial to working with modules at all.

A common directory structure within a module will mimic the main application folder:

/acme
 /Blog
 /Config
 /Controllers
 /Database
 /Migrations
 /Seeds
 /Helpers
 /Language
 /en
 /Libraries
 /Models
 /Views

Of course, there is nothing forcing you to use this exact structure, and you should organize it in the manner that
best suits your module, leaving out directories you don’t need, creating new directories for Entities, Interfaces,
or Repositories, etc.

Working With Files

This section will take a look at each of the file types (controllers, views, language files, etc) and how they can
be used within the module. Some of this information is described in more detail in the relevant location of the user
guide, but is being reproduced here so that it’s easier to grasp how all of the pieces fit together.

Routes

By default, routes are not automatically scanned for within modules. This is to boost
performance when modules are not in use. However, it’s a simple thing to scan for any Routes file within modules.
Simply change the discoverLocal setting to true in /application/Config/Routes.php:

$routes->discoverLocal(true);

This will scan all PSR4 namespaced directories specified in /application/Config/Autoload.php. It will look for
{namespace}/Config/Routes.php files and load them if they exist. This way, each module can contain its own
Routes file that is kept with it whenever you add it to new projects. For our blog example, it would look for
/acme/Blog/Config/Routes.php.

Note

Since the files are being included into the current scope, the $routes instance is already defined for you.
It will cause errors if you attempt to redefine that class.

Controllers

Controllers cannot be automatically routed by URI detection, but must be specified within the Routes file itself:

// Routes.php
$routes->get('blog', 'Acme\Blog\Controllers\Blog::index');

To reduce the amount of typing needed here, the group routing feature is helpful:

$routes->group('blog', ['namespace' => 'Acme\Blog\Controllers'], function($routes)
{
 $routes->get('/', 'Blog::index');
});

Config Files

No special change is needed when working with configuration files. These are still namespaced classes and loaded
with the new command:

$config = new \Acme\Blog\Config\Blog();

Migrations

Migration files will be automatically discovered within defined namespaces. All migrations found across all
namespaces will be ran every time.

Seeds

Seeds files can be used from both the CLI and called from within other seed files as long as the full namespace
is provided. If calling on the CLI, you will need to provide double backslashes:

> php public/index.php migrations seed Acme\\Blog\\Database\\Seeds\\TestPostSeeder

Helpers

Helpers will be located automatically from defined namespaces when using the helper() method, as long as it
is within the namespaces Helpers directory:

helper('blog');

Language Files

Language files are located automatically from defined namespaces when using the lang() method, as long as the
file follows the same directory structures as the main application directory.

Libraries

Libraries are always instantiated by their fully-qualified class name, so no special access is provided:

$lib = new \Acme\Blog\Libraries\BlogLib();

Models

Models are always instantiated by their fully-qualified class name, so no special access is provided:

$model = new \Acme\Blog\Models\PostModel();

Views

Views can be loaded using the class namespace as described in the views documentation:

echo view('Acme\Blog\Views\index');

Airflow介绍

采用基于Python语言的Airflow流程管理软件，对实时运行的FSO作业进行管理。针对每个作业编写DAG（定向非循环图）配置脚本，设置各个任务以及任务间的执行依赖关系。Airflow后台运行程序包括：1）调度器（Scheduler），负责在指定时间运行作业；2）管理页面后端服务器（Webserver），负责向前端（浏览器）提供HTML服务。通过在运行机器上访问http://localhost:8080/admin链接可以查看所有在运行的作业列表。其中DAG列显示的是作业名称，如gfs-10km-prod，点击可以进入作业详情页面；Schedule列显示的是作业运行时间，如 30 * * * *表示每小时的30分运行，@hourly是Airflow提供的一种简记，表明每小时00分运行；Recent Tasks列显示作业运行状态，以不同颜色表示不同运行状态，如深绿色表示已经完成的作业数，浅绿色是正在运行的任务数，灰色是等待执行的任务数，红色表示出错的任务数，通过点击相应颜色的按钮可以进入查看任务；Last Run列可以查看最近运行时间；Links列提供一些快捷的操作按钮。

安装

airflow 的安装十分简单，用``pip``来安装：

export AIRFLOW_HOME=~/airflow
pip install airflow[slack]
airflow initdb

pip 安装的**slackclient**为可选，当你需要通知到**slack**时才会用到，但我十分建议也一起安装， 能够及时收到任务执行状况报告。

一些概念

DAG (Directed Acyclic Graph)

它表示的是一些任务的集合，描述了任务之间的依赖关系，以及整个DAG的一些属性， 比如起止时间，执行周期，重试策略等等。通常一个.py文件就是一个DAG。 你也可以理解为这就是一个完整的shell脚本，只是它可以保证脚本中的命令有序执行。

task 任务

它就是DAG文件中的一个个Operator，它描述了具体的一个操作。

Operator 执行器

airflow定义了很多的 Operator，通常一个操作就是一个特定的 Operator， 比如调用 shell 命令要用 BashOperator，调用 python 函数要用PythonOperator， 发邮件要用 EmailOperator，连SSH要用 SSHOperator。社区还在不断地贡献新的 Operator。

ds 日期

前面的脚本里用到了{{ ds }}变量，每个DAG在执行时都会传入一个具体的时间（datetime对象）， 这个ds就会在 render 命令时被替换成对应的时间。

Important

这里要特别强调一下， 对于周期任务，airflow传入的时间是上一个周期的时间（划重点），比如你的任务是每天执行， 那么今天传入的是昨天的日期，如果是周任务，那传入的是上一周今天的值。

Macros

上一条说了ds变量，你肯定会说我的脚本里如果需要不同的时间格式或者不同的时间段怎么办， 这时候就到Macro出场了，airflow本身提供了几种时间格式，比如ds_nodash，顾名思义就是不带短横-的时间格式， 而且还会有一些相关的函数可以直接调用，比如ds_add可以对时间进行加减。

airflow 配置

前面为了尽快展示airflow的强大，我跳过了许多东西，比如它的配置。 在 airflow 初始化时，它会自动在AIRFLOW_HOME目录下生成ariflow.cfg文件，现在打开它让我们看看里面的构造。

executor

这是airflow最关键的一个配置，它指示了airflow以何种方式来执行任务。它有三个选项：

	SequentialExecutor：表示单进程顺序执行，通常只用于测试

	LocalExecutor：表示多进程本地执行，它用python的多进程库从而达到多进程跑任务的效果。

	CeleryExecutor：表示使用celery作为执行器，只要配置了celery，就可以分布式地多机跑任务，一般用于生产环境。

sql_alchemy_conn

这个配置让你指定 airflow 的元信息用何种方式存储，默认用 sqlite，如果要部署到生产环境，推荐使用 mysql。

smtp

如果你需要邮件通知或用到 EmailOperator 的话，需要配置发信的 smtp 服务器。

celery

前面所说的当使用 CeleryExecutor 时要配置 celery 的环境。

命令

airflow 的所有执行操作都需要在命令行下完成，界面只能看任务的依赖， 包括任务执行状态，但如果任务失败了，还是要在命令行下执行。
airflow 的命令总的来说很符合直觉，常用的有如下几个：

	test： 用于测试特定的某个task，不需要依赖满足

	run: 用于执行特定的某个task，需要依赖满足

	backfill: 执行某个DAG，会自动解析依赖关系，按依赖顺序执行

	unpause: 将一个DAG启动为例行任务，默认是关的，所以编写完DAG文件后一定要执行这和要命令，相反命令为pause

	scheduler: 这是整个 airflow 的调度程序，一般是在后台启动

	clear: 清除一些任务的状态，这样会让scheduler来执行重跑

从上面的命令顺序也可以看出，通常的执行顺序是这样：编写完DAG文件， 直接用backfill命令测试整个DAG是否有问题，如果单个任务出错，查看log解决错误， 这时可以用test来单独执行，如果有依赖关系就用run执行，都搞定了后就用unpause打开周期执行， 当然 scheduler 是在后台默认打开的。之后运行过程中发现需要重跑则用clear命令。

URI 路由

本页内容

	URI 路由

	设置你自己的路由规则

	Placeholders

	Examples

	Custom Placeholders

	Regular Expressions

	Closures

	Mapping multiple routes

	Redirecting Routes

	Grouping Routes

	Environment Restrictions

	Reverse Routing

	Using Named Routes

	Using HTTP verbs in routes

	Command-Line only Routes

	Resource Routes

	Change the Controller Used

	Change the Placeholder Used

	Limit the Routes Made

	Global Options

	Assigning Namespace

	Limit to Hostname

	Limit to Subdomains

	Offsetting the Matched Parameters

	Routes Configuration Options

	Default Namespace

	Default Controller

	Default Method

	Translate URI Dashes

	Use Defined Routes Only

	404 Override

	Discovering Module Routes

一般情况下，一个 URL 字符串和它对应的控制器中类和方法是一一对应的关系。 URL 中的每一段通常遵循下面的规则:

example.com/class/function/id/

但是有时候，你可能想改变这种映射关系，调用一个不同的类和方法，而不是 URL 中对应的那样。

例如，假设你希望你的 URL 变成下面这样:

example.com/product/1/
example.com/product/2/
example.com/product/3/
example.com/product/4/

URL 的第二段通常表示方法的名称，但在上面的例子中，第二段是一个商品 ID ， 为了实现这一点，FSO 允许你重新定义 URL 的处理流程。

设置你自己的路由规则

Routing rules are defined in the application/config/Routes.php file. In it you’ll see that
it creates an instance of the RouteCollection class that permits you to specify your own routing criteria.
Routes can be specified using placeholders or Regular Expressions.

A route simply takes the URI on the left, and maps it to the controller and method on the right,
along with any parameters that should be passed to the controller. The controller and method should
be listed in the same way that you would use a static method, by separating the fully-namespaced class
and its method with a double-colon, like Users::list. If that method requires parameters to be
passed to it, then they would be listed after the method name, separated by forward-slashes:

// Calls the $Users->list()
Users::list
// Calls $Users->list(1, 23)
Users::list/1/23

Placeholders

A typical route might look something like this:

$routes->add('product/:num', 'App\Catalog::productLookup');

In a route, the first parameter contains the URI to be matched, while the second parameter
contains the destination it should be re-routed to. In the above example, if the literal word
“product” is found in the first segment of the URL, and a number is found in the second segment,
the “AppCatalog” class and the “productLookup” method are used instead.

Placeholders are simply strings that represent a Regular Expression pattern. During the routing
process, these placeholders are replaced with the value of the Regular Expression. They are primarily
used for readability.

The following placeholders are available for you to use in your routes:

	(:any) will match all characters from that point to the end of the URI. This may include multiple URI segments.

	(:segment) will match any character except for a forward slash (/) restricting the result to a single segment.

	(:num) will match any integer.

	(:alpha) will match any string of alphabetic characters

	(:alphanum) will match any string of alphabetic characters or integers, or any combination of the two.

	(:hash) is the same as :segment, but can be used to easily see which routes use hashed ids (see the Model docs).

Note

{locale} cannot be used as a placeholder or other part of the route, as it is reserved for use
in localization.

Examples

Here are a few basic routing examples:

$routes->add('journals', 'App\Blogs');

A URL containing the word “journals” in the first segment will be remapped to the “AppBlogs” class,
and the default method, which is usually index():

$routes->add('blog/joe', 'Blogs::users/34');

A URL containing the segments “blog/joe” will be remapped to the “Blogs” class and the “users” method.
The ID will be set to “34”:

$routes->add('product/(:any)', 'Catalog::productLookup');

A URL with “product” as the first segment, and anything in the second will be remapped to the “Catalog” class
and the “productLookup” method:

$routes->add('product/(:num)', 'Catalog::productLookupByID/$1';

A URL with “product” as the first segment, and a number in the second will be remapped to the “Catalog” class
and the “productLookupByID” method passing in the match as a variable to the method.

Important

While the add() method is convenient, it is recommended to always use the HTTP-verb-based
routes, described below, as it is more secure. It will also provide a slight performance increase, since
only routes that match the current request method are stored, resulting in less routes to scan through
when trying to find a match.

Custom Placeholders

You can create your own placeholders that can be used in your routes file to fully customize the experience
and readability.

You add new placeholders with the addPlaceholder method. The first parameter is the string to be used as
the placeholder. The second parameter is the Regular Expression pattern it should be replaced with.
This must be called before you add the route:

$routes->addPlaceholder('uuid', '[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}');
$routes->add('users/(:uuid)', 'Users::show/$1');

Regular Expressions

If you prefer you can use regular expressions to define your routing rules. Any valid regular expression
is allowed, as are back-references.

In the above example, a URI similar to products/shirts/123 would instead call the “Shirts” controller class
and the “id_123” method.

With regular expressions, you can also catch a segment containing a forward slash (‘/’), which would usually
represent the delimiter between multiple segments.

For example, if a user accesses a password protected area of your web application and you wish to be able to
redirect them back to the same page after they log in, you may find this example useful:

$routes->add('login/(.+)', 'Auth::login/$1');

For those of you who don’t know regular expressions and want to learn more about them,
regular-expressions.info [http://www.regular-expressions.info/] might be a good starting point.

Important

Note: You can also mix and match wildcards with regular expressions.

Closures

You can use an anonymous function, or Closure, as the destination that a route maps to. This function will be
executed when the user visits that URI. This is handy for quickly executing small tasks, or even just showing
a simple view:

$routes->add('feed', function()
 {
 $rss = new RSSFeeder();
 return $rss->feed('general');
 {
);

Mapping multiple routes

While the add() method is simple to use, it is often handier to work with multiple routes at once, using
the map() method. Instead of calling the add() method for each route that you need to add, you can
define an array of routes and then pass it as the first parameter to the map() method:

$routes = [];
$routes['product/(:num)'] = 'Catalog::productLookupById';
$routes['product/(:alphanum)'] = 'Catalog::productLookupByName';

$collection->map($routes);

Redirecting Routes

Any site that lives long enough is bound to have pages that move. You can specify routes that should redirect
to other routes with the addRedirect() method. The first parameter is the URI pattern for the old route. The
second parameter is either the new URI to redirect to, or the name of a named route. The third parameter is
the HTTP status code that should be sent along with the redirect. The default value is 302 which is a temporary
redirect and is recommended in most cases:

$routes->add('users/profile', 'Users::profile', ['as' => 'profile']);

// Redirect to a named route
$routes->addRedirect('users/about', 'profile');
// Redirect to a URI
$routes->addRedirect('users/about', 'users/profile');

If a redirect route is matched during a page load, the user will be immediately redirected to the new page before a
controller can be loaded.

Grouping Routes

You can group your routes under a common name with the group() method. The group name becomes a segment that
appears prior to the routes defined inside of the group. This allows you to reduce the typing needed to build out an
extensive set of routes that all share the opening string, like when building an admin area:

$routes->group('admin', function($routes)
{
 $routes->add('users', 'Admin\Users::index');
 $routes->add('blog', 'Admin\Blog::index');
});

This would prefix the ‘users’ and ‘blog” URIs with “admin”, handling URLs like /admin/users and /admin/blog.
It is possible to nest groups within groups for finer organization if you need it:

$routes->group('admin', function($routes)
{
 $routes->group('users', function($routes)
 {
 $routes->add('list', 'Admin\Users::list');
 });

});

This would handle the URL at admin/users/list.

Environment Restrictions

You can create a set of routes that will only be viewable under a certain environment. This allows you to create
tools that only the developer can use on their local machines that are not reachable on testing or production servers.
This can be done with the environment() method. The first parameter is the name of the environment. Any
routes defined within this closure are only accessible from the given environment:

$routes->environment('development', function($routes)
{
 $routes->add('builder', 'Tools\Builder::index');
});

Reverse Routing

Reverse routing allows you to define the controller and method, as well as any parameters, that a link should go
to, and have the router lookup the current route to it. This allows route definitions to change without you having
to update your application code. This is typically used within views to create links.

For example, if you have a route to a photo gallery that you want to link to, you can use the route_to() helper
function to get the current route that should be used. The first parameter is the fully qualified Controller and method,
separated by a double colon (::), much like you would use when writing the initial route itself. Any parameters that
should be passed to the route are passed in next:

// The route is defined as:
$routes->add('users/(:id)/gallery(:any)', 'App\Controllers\Galleries::showUserGallery/$1/$2');

// Generate the relative URL to link to user ID 15, gallery 12
// Generates: /users/15/gallery/12
<a href="<?= route_to('App\Controllers\Galleries::showUserGallery', 15, 12) ?>">View Gallery

Using Named Routes

You can name routes to make your application less fragile. This applies a name to a route that can be called
later, and even if the route definition changes, all of the links in your application built with route_to
will still work without you having to make any changes. A route is named by passing in the as option
with the name of the route:

// The route is defined as:
$routes->add('users/(:id)/gallery(:any)', 'Galleries::showUserGallery/$1/$2', ['as' => 'user_gallery');

 // Generate the relative URL to link to user ID 15, gallery 12
 // Generates: /users/15/gallery/12
 <a href="<?= route_to('user_gallery', 15, 12) ?>">View Gallery

This has the added benefit of making the views more readable, too.

Using HTTP verbs in routes

It is possible to use HTTP verbs (request method) to define your routing rules. This is particularly
useful when building RESTFUL applications. You can use any standard HTTP verb (GET, POST, PUT, DELETE, etc).
Each verb has its own method you can use:

$routes->get('products', 'Product::feature');
$routes->post('products', 'Product::feature');
$routes->put('products/(:num)', 'Product::feature');
$routes->delete('products/(:num)', 'Product::feature');

You can supply multiple verbs that a route should match by passing them in as an array to the match method:

$routes->match(['get', 'put'], 'products', 'Product::feature');

Command-Line only Routes

You can create routes that work only from the command-line, and are inaccessible from the web browser, with the
cli() method. This is great for building cronjobs or CLI-only tools. Any route created by any of the HTTP-verb-based
route methods will also be inaccessible from the CLI, but routes created by the any() method will still be
available from the command line:

$routes->cli('migrate', 'App\Database::migrate');

Resource Routes

You can quickly create a handful of RESTful routes for a single resource with the resource() method. This
creates the five most common routes needed for full CRUD of a resource: create a new resource, update an existing one,
list all of that resource, show a single resource, and delete a single resource. The first parameter is the resource
name:

 $routes->resource('photos');

 // Equivalent to the following:
 $routes->get('photos', 'Photos::index');
 $routes->get('photos/new', 'Photos::new');
 $routes->get('photos/(:segment)/edit', 'Photos::edit/$1');
 $routes->get('photos/(:segment)', 'Photos::show/$1');
 $routes->post('photos', 'Photos::create');
$routes->patch('photos/(:segment)', 'Photos::update/$1');
 $routes->put('photos/(:segment)', 'Photos::update/$1');
 $routes->delete('photos/(:segment)', 'Photos::delete/$1');

Important

The routes are matched in the order they are specified, so if you have a resource photos above a get ‘photos/poll’

the show action’s route for the resource line will be matched before the get line. To fix this, move the get line above the resource
line so that it is matched first.

The second parameter accepts an array of options that can be used to modify the routes that are generated. While these
routes are geared toward API-usage, where more methods are allowed, you can pass in the ‘websafe’ option to have it
generate update and delete methods that work with HTML forms:

$routes->resource('photos', ['websafe' => 1]);

// The following equivalent routes are created:
$routes->post('photos/(:segment)', 'Photos::update/$1');
$routes->post('photos/(:segment)/delete', 'Photos::delete/$1');

Change the Controller Used

You can specify the controller that should be used by passing in the controller option with the name of
the controller that should be used:

$routes->resources('photos', ['controller' =>'App\Gallery']);

// Would create routes like:
$routes->get('photos', 'App\Gallery::index');

Change the Placeholder Used

By default, the segment placeholder is used when a resource ID is needed. You can change this by passing
in the placeholder option with the new string to use:

$routes->resources('photos', ['placeholder' => '(:id)']);

// Generates routes like:
$routes->get('photos/(:id)', 'Photos::show/$1');

Limit the Routes Made

You can restrict the routes generated with the only option. This should be an array of method names that should
be created. Only routes that match one of these methods will be created. The rest will be ignored:

$routes->resources('photos', ['only' => ['index', 'show']]);

Valid methods are: index, show, create, update, new, edit and delete.

Global Options

All of the methods for creating a route (add, get, post, resources, etc) can take an array of options that
can modify the generated routes, or further restrict them. The $options array is always the last parameter:

$routes->add('from', 'to', $options);
$routes->get('from', 'to', $options);
$routes->post('from', 'to', $options);
$routes->put('from', 'to', $options);
$routes->head('from', 'to', $options);
$routes->options('from', 'to', $options);
$routes->delete('from', 'to', $options);
$routes->patch('from', 'to', $options);
$routes->match(['get', 'put'], 'from', 'to', $options);
$routes->resources('photos', $options);
$routes->map($array, $options);
$routes->group('name', $options, function());

Assigning Namespace

While a default namespace will be prepended to the generated controllers (see below), you can also specify
a different namespace to be used in any options array, with the namespace option. The value should be the
namespace you want modified:

// Routes to \Admin\Users::index()
$routes->add('admin/users', 'Users::index', ['namespace' => 'Admin']);

The new namespace is only applied during that call for any methods that create a single route, like get, post, etc.
For any methods that create multiple routes, the new namespace is attached to all routes generated by that function
or, in the case of group(), all routes generated while in the closure.

Limit to Hostname

You can restrict groups of routes to function only in certain domain or sub-domains of your application
by passing the “hostname” option along with the desired domain to allow it on as part of the options array:

$collection->get('from', 'to', ['hostname' => 'accounts.example.com']);

This example would only allow the specified hosts to work if the domain exactly matched “accounts.example.com”.
It would not work under the main site at “example.com”.

Limit to Subdomains

When the subdomain option is present, the system will restrict the routes to only be available on that
sub-domain. The route will only be matched if the subdomain is the one the application is being viewed through:

// Limit to media.example.com
$routes->add('from', 'to', ['subdomain' => 'media']);

You can restrict it to any subdomain by setting the value to an asterisk, (*). If you are viewing from a URL
that does not have any subdomain present, this will not be matched:

// Limit to any sub-domain
$routes->add('from', 'to', ['subdomain' => '*']);

Important

The system is not perfect and should be tested for your specific domain before being used in production.
Most domains should work fine but some edge case ones, especially with a period in the domain itself (not used
to separate suffixes or www) can potentially lead to false positives.

Offsetting the Matched Parameters

You can offset the matched parameters in your route by any numeric value with the offset option, with the
value being the number of segments to offset.

This can be beneficial when developing API’s with the first URI segment being the version number. It can also
be used when the first parameter is a language string:

$routes->get('users/(:num)', 'users/show/$1', ['offset' => 1]);

// Creates:
$routes['users/(:num)'] = 'users/show/$2';

Routes Configuration Options

The RoutesCollection class provides several options that affect all routes, and can be modified to meet your
application’s needs. These options are available at the top of /application/Config/Routes.php.

Default Namespace

When matching a controller to a route, the router will add the default namespace value to the front of the controller
specified by the route. By default, this value is empty, which leaves each route to specify the fully namespaced
controller:

$routes->setDefaultNamespace('');

// Controller is \Users
 $routes->add('users', 'Users::index');

 // Controller is \Admin\Users
 $routes->add('users', 'Admin\Users::index');

If your controllers are not explicitly namespaced, there is no need to change this. If you namespace your controllers,
then you can change this value to save typing:

$routes->setDefaultNamespace('App');

// Controller is \App\Users
$routes->add('users', 'Users::index');

// Controller is \App\Admin\Users
$routes->add('users', 'Admin\Users::index');

Default Controller

When a user visits the root of your site (i.e. example.com) the controller to use is determined by the value set by
the setDefaultController() method, unless a route exists for it explicitly. The default value for this is Home
which matches the controller at /application/Controllers/Home.php:

// example.com routes to application/Controllers/Welcome.php
$routes->setDefaultController('Welcome');

The default controller is also used when no matching route has been found, and the URI would point to a directory
in the controllers directory. For example, if the user visits example.com/admin, if a controller was found at
/application/Controllers/admin/Home.php it would be used.

Default Method

This works similar to the default controller setting, but is used to determine the default method that is used
when a controller is found that matches the URI, but no segment exists for the method. The default value is
index:

$routes->setDefaultMethod('listAll');

In this example, if the user were to visit example.com/products, and a Products controller existed, the
Products::listAll() method would be executed.

Translate URI Dashes

This option enables you to automatically replace dashes (‘-‘) with underscores in the controller and method
URI segments, thus saving you additional route entries if you need to do that. This is required, because the
dash isn’t a valid class or method name character and would cause a fatal error if you try to use it:

$routes->setTranslateURIDashes(true);

Use Defined Routes Only

When no defined route is found that matches the URI, the system will attempt to match that URI against the
controllers and methods as described above. You can disable this automatic matching, and restrict routes
to only those defined by you, by setting the setAutoRoute() option to false:

$routes->setAutoRoute(false);

404 Override

When a page is not found that matches the current URI, the system will show a generic 404 view. You can change
what happens by specifying an action to happen with the set404Override() option. The value can be either
a valid class/method pair, just like you would show in any route, or a Closure:

// Would execute the show404 method of the App\Errors class
$routes->set404Override('App\Errors::show404');

// Will display a custom view
$routes->set404Override(function(){
 echo view('my_errors/not_found.html');
});

Discovering Module Routes

If you are using modular code, then this setting will specify whether or not additional
Routes files should be scanned for within each of the PSR4 namespaces defined in /application/Config/Autoload.php.

$routes->discoverLocal(false);

Testing

FSO has been built to make testing both the framework and your application as simple as possible.
Support for PHPUnit is built in, and a phpunit.xml file is already setup for your application.
It also provides a number of convenient helper methods to make testing every aspect of your application
as painless as possible.

	Testing Your Application

	The Test Class

	Mocking Services

	Testing Your Database

	The Test Class

	Test Database Setup

	Helper Methods

Testing Your Application

The Test Class

In order to take advantage of the additional tools provided, your tests must extend \CIUnitTestCase:

class MyTests extends \CIUnitTestCase
{
 . . .
}

Note

More features are planned, but are not implemented yet. Stay tuned.

Mocking Services

You will often find that you need to mock one of the services defined in application/Config/Services.php to limit
your tests to only the code in question, while simulating various responses from the services. This is especially
true when testing controllers and other integration testing. FSO makes this simple.

While in test mode, the system loads a wrapper around the Services class that provides two new methods,
injectMock(), and reset().

injectMock()

This method allows you to define the exact instance that will be returned by the Services class. You can use this to
set properties of a service so that it behaves in a certain way, or replace a service with a mocked class.

public function testSomething()
{
 $curlrequest = $this->getMockBuilder('FSO\HTTP\CURLRequest')
 ->setMethods(['request'])
 ->getMock();
 Services::injectMock('curlrequest', $curlrequest);

 // Do normal testing here....
}

The first parameter is the service that you are replacing. The name must match the function name in the Services
class exactly. The second parameter is the instance to replace it with.

reset()

Removes all mocked classes from the Services class, bringing it back to its original state.

Testing Your Database

The Test Class

In order to take advantage of the built-in database tools that FSO provides for testing, your
tests must extend \CIDatabaseTestCase:

class MyTests extends \CIDatabaseTestCase
{
 . . .
}

Because special functionality is ran during the setUp() and tearDown() phases, you must ensure
that you call the parent’s methods if you need to use those methods, otherwise you will lose much
of the functionality described here.

class MyTests extends \CIDatabaseTestCase
{
 public function setUp()
 {
 parent::setUp();

 // Do something here....
 }

 public function tearDown()
 {
 parent::tearDown();

 // Do something here....
 }
}

Test Database Setup

When running database tests, you need to provide a database that can be used during testing. Instead of
using the PHPUnit built-in database features, the framework provides tools specific to FSO. The first
step is to ensure that you have a tests database group setup in application/Config/Database.php.
This specifies a database connection that is only used while running tests, to keep your other data safe.

If you have multiple developers on your team, you will likely want to keep your credentials store in
the .env file. To do so, edit the file to ensure the following lines are present, and have the
correct information:

database.tests.dbdriver = 'MySQLi';
database.tests.username = 'root';
database.tests.password = '';
database.tests.database = '';

Migrations and Seeds

When running tests you need to ensure that your database has the correct schema setup, and that
it is in a known state for every test. You can use migrations and seeds to setup your database,
by adding a couple of class properties to your test.

class MyTests extends \CIDatabaseTestCase
{
 protected $refresh = true;
 protected $seed = 'TestSeeder';
 protected $basePath = 'path/to/database/files';
}

$refresh

This boolean value determines whether the database is completely refreshed before every test. If true,
all migrations are rolled back to version 0, then the database is migrated to the latest available migration.

$seed

If present and not empty, this specifies the name of a Seed file that is ran to populate the database with
test data prior to every test running.

$basePath

By default, FSO will look in tests/_support/database/migrations and tests/_support_database/seeds
to locate the migrations and seeds that it should run during testing. You can change this directory by specifying
the path in the $basePath property. This should not include the migrations or seeds directories, but
the path to the single directory that holds both of those sub-directories.

Helper Methods

The CIDatabaseTestCase class provides several helper methods to aid in testing your database.

seed($name)

Allows you to manually load a Seed into the database. The only parameter is the name of the seed to run. The seed
must pe present within the path specified in $basePath.

dontSeeInDatabase($table, $criteria)

Asserts that a row with criteria matching the key/value pairs in $criteria DOES NOT exist in the database.

$criteria = [
 'email' => 'joe@example.com',
 'active' => 1
];
$this->dontSeeInDatabase('users', $criteria);

seeInDatabase($table, $criteria)

Asserts that a row with criteria matching the key/value pairs in $criteria DOES exist in the database.

$criteria = [
 'email' => 'joe@example.com',
 'active' => 1
];
$this->seeInDatabase('users', $criteria);

grabFromDatabase($table, $column, $criteria)

Returns the value of $column from the specified table where the row matches $criteria. If more than one
row is found, it will only test against the first one.

$username = $this->grabFromDatabase('users', 'username', ['email' => 'joe@example.com']);

hasInDatabase($table, $data)

Inserts a new row into the database. This row is removed after the current test runs. $data is an associative
array with the data to insert into the table.

$data = [
 'email' => 'joe@example.com',
 'name' => 'Joe Cool'
];
$this->hasInDatabase('users', $data);

seeNumRecords($expected, $table, $criteria)

Asserts that a number of matching rows are found in the database that match $criteria.

$criteria = [
 'deleted' => 1
];
$this->seeNumRecords(2, 'users', $criteria);

FSO URLs

在默认情况下，FSO 中的 URL 被设计成对搜索引擎和用户友好的样式。 不同于使用传统的在动态系统中使用代词的标准 “查询字符串” 的方式，FSO 使用基于段的方法:

example.com/news/article/my_article

URI分段

如果遵循模型-视图-控制器模式，那么 URI 中的每一段通常表示下面的含义:

example.com/class/method/ID

	第一段表示要调用的控制器 类 ;

	第二段表示要调用的类中的 函数 或 方法 ；

	第三段以及后面的段代表传给控制器的参数，如 ID 或其他任何变量；

URI 类 和 URL 辅助函数 包含了一些函数可以让你更容易的处理 URI 数据。此外，可以通过 URI 路由 的方式进行重定向你的 URL 从而使得程序更加灵活。

移除 index.php 文件

默认情况，你的 URL 中会包含 index.php 文件:

example.com/index.php/news/article/my_article

如果你的服务器支持重写 URL ，那么通过 URL 重写，我们可以轻易的去除这个文件。在不同的服务器中，处理方式各异，故而如下我们主要展示两个最为通用的Web服务器。

Apache服务器

Apache需要开启 mod_rewrite 扩展。当开启时，我们可以使用一个 .htaccess 文件以及一些简单的规则来实现 URL 重写。如下为这个文件的一个样例，其中使用了”否定“方法来排除某些不需要重定向的项目:

RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule ^(.*)$ index.php/$1 [L]

在上面的例子中，除已存在的目录和文件外，其他的 HTTP 请求都会经过你的 index.php 文件。

Note

这些规则并不是对所有服务器配置都有效。

Note

确保使用上面的规则时，排除掉那些你希望能直接访问到的资源。

NGINX

在NGINX中，我们可以定义一个 location 块并用 try_files 导向来取得如上文中 Apache 配置一样的效果:

location / {
try_files $uri $uri/ /index.php/$args;
}

服务器将会首先寻找符合对应 URI 的文件或目录（对于每个文件，通过根目录和别名目录来构建其完整的路径），然后再将其他的请求发送至 index.php 文件中。

View Cells

View Cells allow you to insert HTML that is generated outside of your controller. It simply calls the specified
class and method, which must return valid HTML. This method could be in an callable method, found in any class
that the autoloader can locate. The only restriction is that the class can not have any constructor parameters.
This is intended to be used within views, and is a great aid to modularizing your code.

<?= view_cell('\App\Libraries\Blog::recentPosts') ?>

In this example, the class App\Libraries\Blog is loaded, and the method recentPosts() is ran. That method
must return a string with the generated HTML. The method used can be either a static method or not. Either way works.

Cell Parameters

You can further refine the call by passing a string with a list of parameters in the second parameter that are passed
to the method as an array of key/value pairs, or a comma-seperated string of key/value pairs:

// Passing Parameter Array
<?= view_cell('\App\Libraries\Blog::recentPosts', ['category' => 'codeigniter', 'limit' => 5]) ?>

// Passing Parameter String
<?= view_cell('\App\Libraries\Blog::recentPosts', 'category=codeigniter, limit=5') ?>

public function recentPosts(array $params=[])
{
 $posts = $this->blogModel->where('category', $params['category'])
 ->orderBy('published_on', 'desc')
 ->limit($params['limit'])
 ->get();

 return view('recentPosts', ['posts' => $posts]);
}

Additionally, you can use parameter names that match the parameter variables in the method for better readability.
When you use it this way, all of the parameters must always be specified in the view cell call:

<?= view_cell('\App\Libraries\Blog::recentPosts', 'category=codeigniter, limit=5') ?>

public function recentPosts(int $limit, string $category)
{
 $posts = $this->blogModel->where('category', $category)
 ->orderBy('published_on', 'desc')
 ->limit($limit)
 ->get();

 return view('recentPosts', ['posts' => $posts]);
}

Cell Caching

You can cache the results of the view cell call by passing the number of seconds to cache the data for as the
third parameter. This will use the currently configured cache engine.

// Cache the view for 5 minutes
<?= view_cell('\App\Libraries\Blog::recentPosts', 'limit=5', 300) ?>

You can provide a custom name to use instead of the auto-generated one if you like, by passing the new name
as the fourth parameter:

// Cache the view for 5 minutes
<?= view_cell('\App\Libraries\Blog::recentPosts', 'limit=5', 300, 'newcacheid') ?>

View Parser

The View Parser can perform simple text substitution for
pseudo-variables contained within your view files.
It can parse simple variables or variable tag pairs.

Pseudo-variable names or control constructs are enclosed in braces, like this:

<html>
 <head>
 <title>{blog_title}</title>
 </head>
 <body>
 <h3>{blog_heading}</h3>

 {blog_entries}
 <h5>{title}</h5>
 <p>{body}</p>
 {/blog_entries}

 </body>
</html>

These variables are not actual PHP variables, but rather plain text
representations that allow you to eliminate PHP from your templates
(view files).

Note

FSO does not require you to use this class since
using pure PHP in your view pages (for instance using the
View renderer)
lets them run a little faster.
However, some developers prefer to use some form of template engine if
they work with designers who they feel would find some
confusion working with PHP.

Using the View Parser Class

The simplest method to load the parser class is through its service:

$parser = \Config\Services::parser();

Alternately, if you are not using the Parser class as your default renderer, you
can instantiate it directly:

$parser = new \FSO\View\Parser();

Then you can use any of the three standard rendering methods that it provides:
render(viewpath, options, save), setVar(name, value, context) and
setData(data, context). You will also be able to specify delimiters directly,
through the setDelimiters(left,right) method.

Using the Parser, your view templates are processed only by the Parser
itself, and not like a conventional view PHP script. PHP code in such a script
is ignored by the parser, and only substitutions are performed.

This is purposeful: view files with no PHP.

What It Does

The Parser class processes “PHP/HTML scripts” stored in the application’s view path.
These scripts have a .php extension, but can not contain any PHP.

Each view parameter (which we refer to as a pseudo-variable) triggers a substitution,
based on the type of value you provided for it. Pseudo-variables are not
extracted into PHP variables; instead their value is accessed through the pseudo-variable
syntax, where its name is referenced inside braces.

The Parser class uses an associative array internally, to accumulate pseudo-variable
settings until you call its render(). This means that your pseudo-variable names
need to be unique, or a later parameter setting will over-ride an earlier one.

This also impacts escaping parameter values for different contexts inside your
script. You will have to give each escaped value a unique parameter name.

Parser templates

You can use the render() method to parse (or render) simple templates,
like this:

$data = [
 'blog_title' => 'My Blog Title',
 'blog_heading' => 'My Blog Heading'
];

echo $parser->setData($data)
 ->render('blog_template');

View parameters are passed to setData() as an associative
array of data to be replaced in the template. In the above example, the
template would contain two variables: {blog_title} and {blog_heading}
The first parameter to render() contains the name of the view
file (in this example the file would be called blog_template.php),

Parser Configuration Options

Several options can be passed to the render() or renderString() methods.

	cache - the time in seconds, to save a view’s results; ignored for renderString()

	
	cache_name - the ID used to save/retrieve a cached view result; defaults to the viewpath;

	ignored for renderString()

	
	saveData - true if the view data parameters should be retained for subsequent calls;

	default is false

	
	cascadeData - true if pseudo-variable settings should be passed on to nested

	substitutions; default is true

echo $parser->render('blog_template', [
 'cache' => HOUR,
 'cache_name' => 'something_unique',
]);

Substitution Variations

There are three types of substitution supported: simple, looping, and nested.
Substitutions are performed in the same sequence that pseudo-variables were added.

The simple substitution performed by the parser is a one-to-one
replacement of pseudo-variables where the corresponding data parameter
has either a scalar or string value, as in this example:

$template = '<head><title>{blog_title}</title></head>';
$data = ['blog_title' => 'My ramblings'];

echo $parser->setData($data)->renderString($template);

// Result: <head><title>My ramblings</title></head>

The Parser takes substitution a lot further with “variable pairs”,
used for nested substitutions or looping, and with some advanced
constructs for conditional substitution.

When the parser executes, it will generally

	handle any conditional substitutions

	handle any nested/looping substutions

	handle the remaining single substitutions

Loop Substitutions

A loop substitution happens when the value for a pseudo-variable is
a sequential array of arrays, like an array of row settings.

The above example code allows simple variables to be replaced. What if
you would like an entire block of variables to be repeated, with each
iteration containing new values? Consider the template example we showed
at the top of the page:

<html>
 <head>
 <title>{blog_title}</title>
 </head>
 <body>
 <h3>{blog_heading}</h3>

 {blog_entries}
 <h5>{title}</h5>
 <p>{body}</p>
 {/blog_entries}

 </body>
</html>

In the above code you’ll notice a pair of variables: {blog_entries}
data… {/blog_entries}. In a case like this, the entire chunk of data
between these pairs would be repeated multiple times, corresponding to
the number of rows in the “blog_entries” element of the parameters array.

Parsing variable pairs is done using the identical code shown above to
parse single variables, except, you will add a multi-dimensional array
corresponding to your variable pair data. Consider this example:

$data = array(
 'blog_title' => 'My Blog Title',
 'blog_heading' => 'My Blog Heading',
 'blog_entries' => array(
 array('title' => 'Title 1', 'body' => 'Body 1'),
 array('title' => 'Title 2', 'body' => 'Body 2'),
 array('title' => 'Title 3', 'body' => 'Body 3'),
 array('title' => 'Title 4', 'body' => 'Body 4'),
 array('title' => 'Title 5', 'body' => 'Body 5')
)
);

echo $parser->setData($data)
 ->render('blog_template');

The value for the pseudo-variable blog_entries is a sequential
array of associative arrays. The outer level does not have keys associated
with each of the nested “rows”.

If your “pair” data is coming from a database result, which is already a
multi-dimensional array, you can simply use the database getResultArray()
method:

$query = $db->query("SELECT * FROM blog");

$data = array(
 'blog_title' => 'My Blog Title',
 'blog_heading' => 'My Blog Heading',
 'blog_entries' => $query->getResultArray()
);

echo $parser->setData($data)
 ->render('blog_template');

Nested Substitutions

A nested substitution happens when the value for a pseudo-variable is
an associative array of values, like a record from a database:

$data = array(
 'blog_title' => 'My Blog Title',
 'blog_heading' => 'My Blog Heading',
 'blog_entry' => array(
 'title' => 'Title 1', 'body' => 'Body 1'
)
);

echo $parser->setData($data)
 ->render('blog_template');

The value for the pseudo-variable blog_entry is an associative
array. The key/value pairs defined inside it will be exposed inside
the variable pair loop for that variable.

A blog_template that might work for the above:

<h1>{blog_title} - {blog_heading}</h1>
{blog_entry}
 <div>
 <h2>{title}</h2>
 <p>{body}{/p}
 </div>
{/blog_entry}

If you would like the other pseudo-variables accessible inside the “blog_entry”
scope, then make sure that the “cascadeData” option is set to true.

Comments

You can place comments in your templates that will be ignored and removed during parsing by wrapping the
comments in a {# #} symbols.

{# This comment is removed during parsing. #}
{blog_entry}
 <div>
 <h2>{title}</h2>
 <p>{body}{/p}
 </div>
{/blog_entry}

Cascading Data

With both a nested and a loop substitution, you have the option of cascading
data pairs into the inner substitution.

The following example is not impacted by cascading:

$template = '{name} lives in {location}{city} on {planet}{/location}.';

$data = ['name' => 'George',
 'location' => ['city' => 'Red City', 'planet' => 'Mars']];

echo $parser->setData($data)->renderString($template);
// Result: George lives in Red City on Mars.

This example gives different results, depending on cascading:

$template = '{location}{name} lives in {city} on {planet}{/location}.';

$data = ['name' => 'George',
 'location' => ['city' => 'Red City', 'planet' => 'Mars']];

echo $parser->setData($data)->renderString($template, ['cascadeData'=>false]);
// Result: {name} lives in Red City on Mars.

echo $parser->setData($data)->renderString($template, ['cascadeData'=>true]);
// Result: George lives in Red City on Mars.

Preventing Parsing

You can specify portions of the page to not be parsed with the {noparse}{/noparse} tag pair. Anything in this
section will stay exactly as it is, with no variable substition, looping, etc, happening to the markup between the brackets.

{noparse}
 <h1>Untouched Code</h1>
{/noparse}

Conditional Logic

The Parser class supports some basic conditionals to handle if, else, and elseif syntax. All if
blocks must be closed with an endif tag:

{if role=='admin'}
 <h1>Welcome, Admin!</h1>
{endif}

This simple block is converted to the following during parsing:

<?php if ($role=='admin'): ?>
 <h1>Welcome, Admin!</h1>
<?php endif ?>

All variables used within if statements must have been previously set with the same name. Other than that, it is
treated exactly like a standard PHP conditional, and all standard PHP rules would apply here. You can use any
of the comparison operators you would normally, like ==, ===, !==, <, >, etc.

{if role=='admin'}
 <h1>Welcome, Admin</h1>
{elseif role=='moderator'}
 <h1>Welcome, Moderator</h1>
{else}
 <h1>Welcome, User</h1>
{endif}

Note

In the background, conditionals are parsed using an eval(), so you must ensure that you take
care with the user data that is used within conditionals, or you could open your application up to security risks.

Escaping Data

By default, all variable substitution is escaped to help prevent XSS attacks on your pages. FSO’s esc method
supports several different contexts, like general html, when it’s in an HTML attr*, in **css, etc. If nothing
else is specified, the data will be assumed to be in an HTML context. You can specify the context used by using the esc
filter:

{ user_styles | esc(css) }
{ title }

There will be times when you absolutely need something to used and NOT escaped. You can do this by adding exclamation
marks to the opening and closing braces:

{! unescaped_var !}

Filters

Any single variable substitution can have one or more filters applied to it to modify the way it is presented. These
are not intended to drastically change the output, but provide ways to reuse the same variable data but with different
presentations. The esc filter discussed above is one example. Dates are another common use case, where you might
need to format the same data differently in several sections on the same page.

Filters are commands that come after the pseudo-variable name, and are separated by the pipe symbol, |:

// -55 is displayed as 55
{ value|abs }

If the parameter takes any arguments, they must be separated by commas and enclosed in parentheses:

{ created_at|date(Y-m-d) }

Multiple filters can be applied to the value by piping multiple ones together. They are processed in order, from
left to right:

{ created_at|date_modify(+5 days)|date(Y-m-d) }

Provided Filters

The following filters are available when using the parser:

	Filter

	Arguments

	Description

	Example

	abs

	
	Displays the absolute value of a number.

	{ v|abs }

	capitalize

	
	Displays the string in sentence case: all lowercase with first
letter capitalized.

	{ v|capitalize}

	date

	format (Y-m-d)

	A PHP date-compatible formatting string.

	{ v|date(Y-m-d) }

	date_modify

	value to add/subtract

	A strtotime compatible string to modify the date, like
+5 day or -1 week.

	{ v|date_modify(+1 day) }

	default

	default value

	Displays the default value if the variable is empty or undefined.

	{ v|default(just in case) }

	esc

	html, attr, css, js

	Specifies the context to escape the data.

	{ v|esc(attr) }

	excerpt

	phrase, radius

	Returns the text within a radius of words from a given phrase.
Same as excerpt helper function.

	{ v|excerpt(green giant, 20) }

	highlight

	phrase

	
	Highlights a given phrase within the text using ‘<mark></mark>’

	tags.

	{ v|highlight(view parser) }

	highlight_code

	
	Highlights code samples with HTML/CSS.

	{ v|highlight_code }

	limit_chars

	limit

	Limits the number of chracters to $limit.

	{ v|limit_chars(100) }

	limit_words

	limit

	Limits the number of words to $limit.

	{ v|limit_words(20) }

	lower

	
	Converts a string to lowercase.

	{ v|lower }

	nl2br

	
	Replaces all newline characters (n) to an HTML
 tag.

	{ v|nl2br }

	number_format

	places

	Wraps PHP number_format function for use within the parser.

	{ v|number_format(3) }

	prose

	
	Takes a body of text and uses the auto_typography() method to
turn it into prettier, easier-to-read, prose.

	{ v|prose }

	round

	places, type

	Rounds a number to the specified places. Types of ceil and
floor can be passed to use those functions instead.

	{ v|round(3) } { v|round(ceil) }

	strip_tags

	allowed chars

	Wraps PHP strip_tags. Can accept a string of allowed tags.

	{ v|strip_tags(
) }

	title

	
	Displays a “title case” version of the string, with all lowercase,
and each word capitalized.

	{ v|title }

	upper

	
	Displays the string in all lowercase.

	{ v|upper }

Custom Filters

You can easily create your own filters by editing application/Config/View.php and adding new entries to the
$filters array. Each key is the name the filter is called by in the view, and its value is any valid PHP
callable:

public $filters = [
 'abs' => '\FSO\View\Filters::abs',
 'capitalize' => '\FSO\View\Filters::capitalize',
];

Parser Plugins

Plugins allow you to extend the parser, adding custom features for each project. They can be any PHP callable, making
them very simple to implement. Within templates, plugins are specified by {+ +} tags:

{+ foo +} inner content {+ /foo +}

This example shows a plugin named foo. It can manipulate any of the content between its opening and closing tags.
In this example, it could work with the text ” inner content “. Plugins are processed before any pseudo-variable
replacements happen.

While plugins will often consist of tag pairs, like shown above, they can also be a single tag, with no closing tag:

{+ foo +}

Opening tags can also contain parameters that can customize how the plugin works. The parameters are represented as
key/value pairs:

{+ foo bar=2 baz="x y" }

Parameters can also be single values:

{+ include somefile.php +}

Provided Plugins

The following plugins are available when using the parser:

	Plugin

	Arguments

	Description

	Example

	current_url

	
	Alias for the current_url helper function.

	{+ current_url +}

	previous_url

	
	Alias for the previous_url helper function.

	{+ previous_url +}

	mailto

	email, title, attributes

	Alias for the mailto helper function.

	{+ mailto email=foo@example.com title=”Stranger Things” +}

	safe_mailto

	email, title, attributes

	Alias for the safe_mailto helper function.

	{+ safe_mailto email=foo@example.com title=”Stranger Things” +}

	lang

	language string

	Alias for the lang helper function.

	{+ lang number.terabyteAbbr +}

Registering a Plugin

At its simplest, all you need to do to register a new plugin and make it ready for use is to add it to the
application/Config/View.php, under the $plugins array. The key is the name of the plugin that is
used within the template file. The value is any valid PHP callable, including static class methods, and closures:

public $plugins = [
 'foo' => '\Some\Class::methodName',
 'bar' => function($str, array $params=[]) {
 return $str;
 },
];

If the callable is on its own, it is treated as a single tag, not a open/close one. It will be replaced by
the return value from the plugin:

public $plugins = [
 'foo' => '\Some\Class::methodName'
];

// Tag is replaced by the return value of Some\Class::methodName static function.
{+ foo +}

If the callable is wrapped in an array, it is treated as an open/close tag pair that can operate on any of
the content between its tags:

public $plugins = [
 'foo' => ['\Some\Class::methodName']
];

{+ foo +} inner content {+ /foo +}

Usage Notes

If you include substitution parameters that are not referenced in your
template, they are ignored:

$template = 'Hello, {firstname} {lastname}';
$data = array(
 'title' => 'Mr',
 'firstname' => 'John',
 'lastname' => 'Doe'
);
echo $parser->setData($data)
 ->renderString($template);

// Result: Hello, John Doe

If you do not include a substitution parameter that is referenced in your
template, the original pseudo-variable is shown in the result:

$template = 'Hello, {firstname} {initials} {lastname}';
$data = array(
 'title' => 'Mr',
 'firstname' => 'John',
 'lastname' => 'Doe'
);
echo $parser->setData($data)
 ->renderString($template);

// Result: Hello, John {initials} Doe

If you provide a string substitution parameter when an array is expected,
i.e. for a variable pair, the substitution is done for the opening variable
pair tag, but the closing variable pair tag is not rendered properly:

$template = 'Hello, {firstname} {lastname} ({degrees}{degree} {/degrees})';
$data = array(
 'degrees' => 'Mr',
 'firstname' => 'John',
 'lastname' => 'Doe',
 'titles' => array(
 array('degree' => 'BSc'),
 array('degree' => 'PhD')
)
);
echo $parser->setData($data)
 ->renderString($template);

// Result: Hello, John Doe (Mr{degree} {/degrees})

View Fragments

You do not have to use variable pairs to get the effect of iteration in
your views. It is possible to use a view fragment for what would be inside
a variable pair, and to control the iteration in your controller instead
of in the view.

An example with the iteration controlled in the view:

$template = '{menuitems}
 {title}
{/menuitems}';

$data = array(
 'menuitems' => array(
 array('title' => 'First Link', 'link' => '/first'),
 array('title' => 'Second Link', 'link' => '/second'),
)
);
echo $parser->setData($data)
 ->renderString($template);

Result:

 First Link
 Second Link

An example with the iteration controlled in the controller,
using a view fragment:

$temp = '';
$template1 = '{title}';
$data1 = array(
 array('title' => 'First Link', 'link' => '/first'),
 array('title' => 'Second Link', 'link' => '/second'),
);

foreach ($data1 as $menuitem)
{
 $temp .= $parser->setData($menuItem)->renderString();
}

$template = '{menuitems}';
$data = array(
 'menuitems' => $temp
);
echo $parser->setData($data)
 ->renderString($template);

Result:

 First Link
 Second Link

Class Reference

View Renderer

The view() function is a convenience function that grabs an instance of the
renderer service, sets the data, and renders the view. While this is often
exactly what you want, you may find times where you want to work with it more directly.
In that case you can access the View service directly:

$view = \Config\Services::renderer();

Alternately, if you are not using the View class as your default renderer, you
can instantiate it directly:

$view = new \FSO\View\View();

Important

You should create services only within controllers. If you need
access to the View class from a library, you should set that as a dependency
in your library’s constructor.

Then you can use any of the three standard methods that it provides:
render(viewpath, options, save), setVar(name, value, context) and setData(data, context).

What It Does

The View class processes conventional HTML/PHP scripts stored in the application’s view path,
after extracting view parameters into PHP variables, accessible inside the scripts.
This means that your view parameter names need to be legal PHP variable names.

The View class uses an associative array internally, to accumulate view parameters
until you call its render(). This means that your parameter (or variable) names
need to be unique, or a later variable setting will over-ride an earlier one.

This also impacts escaping parameter values for different contexts inside your
script. You will have to give each escaped value a unique parameter name.

No special meaning is attached to parameters whose value is an array. It is up
to you to process the array appropriately in your PHP code.

Method Chaining

The setVar() and setData() methods are chainable, allowing you to combine a
number of different calls together in a chain:

$view->setVar('one', $one)
 ->setVar('two', $two)
 ->render('myView');

Escaping Data

When you pass data to the setVar() and setData() functions you have the option to escape the data to protect
against cross-site scripting attacks. As the last parameter in either method, you can pass the desired context to
escape the data for. See below for context descriptions.

If you don’t want the data to be escaped, you can pass null or raw as the final parameter to each function:

$view->setVar('one', $one, 'raw');

If you choose not to escape data, or you are passing in an object instance, you can manually escape the data within
the view with the esc() function. The first parameter is the string to escape. The second parameter is the
context to escape the data for (see below):

<?= \esc($object->getStat()) ?>

Escaping Contexts

By default, the esc() and, in turn, the setVar() and setData() functions assume that the data you want to
escape is intended to be used within standard HTML. However, if the data is intended for use in Javascript, CSS,
or in an href attribute, you would need different escaping rules to be effective. You can pass in the name of the
context as the second parameter. Valid contexts are ‘html’, ‘js’, ‘css’, ‘url’, and ‘attr’:

<a href="<?= esc($url, 'url') ?>" data-foo="<?= esc($bar, 'attr') ?>">Some Link

<script>
 var siteName = '<?= esc($siteName, 'js') ?>';
</script>

<style>
 body {
 background-color: <?= esc('bgColor', 'css') ?>
 }
</style>

View Renderer Options

Several options can be passed to the render() or renderString() methods:

	cache - the time in seconds, to save a view’s results; ignored for renderString()

	
	cache_name - the ID used to save/retrieve a cached view result; defaults to the viewpath;

	ignored for renderString()

	saveData - true if the view data parameters should be retained for subsequent calls

Views

A view is simply a web page, or a page fragment, like a header, footer, sidebar, etc. In fact,
views can flexibly be embedded within other views (within other views, etc.) if you need
this type of hierarchy.

Views are never called directly, they must be loaded by a controller. Remember that in an MVC framework,
the Controller acts as the traffic cop, so it is responsible for fetching a particular view. If you have
not read the Controllers page, you should do so before continuing.

Using the example controller you created in the controller page, let’s add a view to it.

Creating a View

Using your text editor, create a file called BlogView.php and put this in it:

<html>
<head>
 <title>My Blog</title>
</head>
<body>
 <h1>Welcome to my Blog!</h1>
</body>
</html>

Then save the file in your application/Views directory.

Displaying a View

To load and display a particular view file you will use the following function:

echo view('name');

Where _name_ is the name of your view file.

Important

The .php file extension does not need to be specified, but all views are expected to end with the .php extension.

Now, open the controller file you made earlier called Blog.php, and replace the echo statement with the view function:

class Blog extends \FSO\Controller
{
 public function index()
 {
 echo view('BlogView');
 }
}

If you visit your site using the URL you did earlier you should see your new view. The URL was similar to this:

example.com/index.php/blog/

Note

While all of the examples show echo the view directly, you can also return the output from the view, instead,
and it will be appended to any captured output.

Loading Multiple Views

FSO will intelligently handle multiple calls to view() from within a controller. If more than one
call happens they will be appended together. For example, you may wish to have a header view, a menu view, a
content view, and a footer view. That might look something like this:

class Page extends \FSO\Controller
{
 public function index()
 {
 $data = [
 'page_title' => 'Your title'
];

 echo view('header');
 echo view('menu');
 echo view('content', $data);
 echo view('footer');
 }
}

In the example above, we are using “dynamically added data”, which you will see below.

Storing Views within Sub-directories

Your view files can also be stored within sub-directories if you prefer that type of organization.
When doing so you will need to include the directory name loading the view. Example:

echo view('directory_name/file_name');

Namespaced Views

You can store views under a View directory that is namespaced, and load that view as if it was namespaced. While
PHP does not support loading non-class files from a namespace, FSO provides this feature to make it possible
to package your views together in a module-like fashion for easy re-use or distribution.

If you have Blog directory that has a PSR-4 mapping setup in the Autoloader living
under the namespace Example\Blog, you could retrieve view files as if they were namespaced also. Following this
example, you could load the BlogView file from /blog/views by prepending the namespace to the view name:

echo view('Example\Blog\Views\BlogView');

Caching Views

You can cache a view with the view command by passing a cache option with the number of seconds to cache
the view for, in the third parameter:

// Cache the view for 60 seconds
echo view('file_name', $data, ['cache' => 60]);

By default, the view will be cached using the same name as the view file itself. You can customize this by passing
along cache_name and the cache ID you wish to use:

// Cache the view for 60 seconds
echo view('file_name', $data, ['cache' => 60, 'cache_name' => 'my_cached_view']);

Adding Dynamic Data to the View

Data is passed from the controller to the view by way of an array in the second parameter of the view function.
Here’s an example:

$data = [
 'title' => 'My title',
 'heading' => 'My Heading',
 'message' => 'My Message'
];

echo view('blogview', $data);

Let’s try it with your controller file. Open it and add this code:

class Blog extends \FSO\Controller
{
 public function index()
 {
 $data['title'] = "My Real Title";
 $data['heading'] = "My Real Heading";

 echo view('blogview', $data);
 }
}

Now open your view file and change the text to variables that correspond to the array keys in your data:

<html>
<head>
 <title><?= $title ?></title>
</head>
<body>
 <h1><?= $heading ?></h1>
</body>
</html>

Then load the page at the URL you’ve been using and you should see the variables replaced.

The data passed in is only available during one call to view. If you call the function multiple times
in a single request, you will have to pass the desired data to each view. This keeps any data from “bleeding” into
other views, potentially causing issues. If you would prefer the data to persist, you can pass the saveData option
into the $option array in the third parameter.

$data = [
 'title' => 'My title',
 'heading' => 'My Heading',
 'message' => 'My Message'
];

echo view('blogview', $data, ['saveData' => true]);

Additionally, if you would like the default functionality of the view method to be that it does save the data
between calls, you can set $saveData to true in application/Config/Views.php.

Creating Loops

The data array you pass to your view files is not limited to simple variables. You can pass multi dimensional
arrays, which can be looped to generate multiple rows. For example, if you pull data from your database it will
typically be in the form of a multi-dimensional array.

Here’s a simple example. Add this to your controller:

class Blog extends \FSO\Controller
{
 public function index()
 {
 $data = [
 'todo_list' => ['Clean House', 'Call Mom', 'Run Errands'],
 'title' => "My Real Title",
 'heading' => "My Real Heading"
];

 echo view('blogview', $data);
 }
}

Now open your view file and create a loop:

<html>
<head>
 <title><?= $title ?></title>
</head>
<body>
 <h1><?= $heading ?></h1>

 <h3>My Todo List</h3>

 <?php foreach ($todo_list as $item):?>

 <?= $item ?>

 <?php endforeach;?>

</body>
</html>

 _images/map_sound_all.png
50°N

40°N

30°N

20°N

SOUND_ALL 2018020900 (59)

75°E 90°E 105°E 120°E 135°E

-183900 -147120 -110340 -73560 -36780 0 36780 73560 110340 147120 183900

_images/map_surface_all.png
SURFACE_ALL 2018020900 (24251)

50°N

40°N

30°N

20°N

|
90°E 120°E

-3050 -2440 -1830 -1220 -610 0 610 1220 1830 2440 3050

_images/gts_omb_oma.png
BMERERE BREBRRO OERRE

=Y

metar 2

1SURF_
1SURF_
sound

1 uea
2 uea
3 uea
4 uea
5 uea

sonde_sfc

1 uea
1 uea

profiler
1 wWND
2 WND

22.47

21.48

36.73

36.73

36.73

36.73

36.73

36.73

37.62

20.00
20.00

111.36

111.46

101.75

101.75

101.75

101.75

101.75

101.75

112.58

110.15
110.15

-888888.0000000

100670.0000000

77100.0000000

70000.0000000

50000.0000000

40000.0000000

30000.0000000

-888888.0000000

-888888.0000000

1415.0000000
1895.0000000

-1.0840874

2.4222002

-1.6704050

5.5857836

0.8589177

6.6435546

18.9815847

-888888.0000000

-888888.0000000

-9.0069802
~7.1465969

0.0000000

-89.3060065

0.0000000

-1456.5852086

-842.0657098

-1203.0196734

1037.5358067

0.0000000

0.0000000

-708.2427394
-856.6538099

-88

-88

-88

1.1000000

1.1000000

1.2200000

1.4000000

2.3000000

2.8000000

3.3000000

888888.0000000

888888.0000000

2.2000000
2.2000000

0.0000000

2.6623266

0.0000000

3.2174812

1.7500607

3.0897391

-2.2377512

0.0000000

0.0000000

-6.3706098
-5.5378204

0.1864257

0.9449582

-1.0998851

-7.0568422

2.8744148

2.2052623

6.3007494

-888888.0000000

-888888.0000000

10.1899120
3.3669204

0.0000000

726.9719727

0.0000000

-2310.5394166

290.0002072

571.1244470

322.3351713

0.0000000

0.0000000

-1873.6202283
-307.8484219

-88

-88

-88

_images/lev_all.png
All variables (2018020900)

<70

100-70

200-100

300-200

400-300

500-400

700-500

850-700

|

|

-

—

u

I

-

3 3 3 I
| -+

o

-8000000 -6000000 -4000000 -2000000
Forecast error contribution (J/kg)

_images/tasklog.png
ata Profiling~ Browse~ Admin~ Dox About~ 2-04 02:04:08 UTC [cd

DAG: fso-prod-v2.0

W GraphView @ Tree View

i Task Duration WM Task Tries AkLanding Times = Gantt

Code Refresh

Task Instance: 4-fso-impact 2018-10-29 08:00:00

Task Instance Details # Rendered Template - # XCom

Log by attempts

*xx Reading local file: /home/zwtd/airFlow/logs/Fso-prod-v2.8/4-fso-impact/2018-10-29Te8::
[2018-10-29 17:52:16,975] {models.py:1335} INFO - Dependencies all met for <TaskInstance: fso-prod-v2.8.4-fso-impact 2018-10-29T08:00:00+00:00 [queued]>
[2018-10-29 17:52:16,980] {models.py:1335} INFO - Dependencies all met for <TaskInstance: fso-prod-v2.8.4-fso-impact 2018-10-29T08:00:00+00:00 [queued]>
[2018-10-29 17:52:16,980] {models.py:1547} INFO -

Starting attempt 1 of 2

[2018-10-29 {models.py:1569} INFO - Executing <Task(BashOperator): 4-fso-impacts> on 2018-10-29T@8:00:00+00:00

[2018-10-29 {base_task_runner.py:124} INFO - Running: ['bash’, ‘-c’, "airflow run fso-prod-v2. 4-fso-impact 2018-10-29T08:00:00+00:00 --job_id 224 --raw -sd DAGS_FOLDER/fso-prod-v2.0.py --cfg_path /tmp/tmplvayampd’]
[2018-10-29 {base_task_runner.py:167} INFO - Job 224: Subtask 4-fso-impact [2018-10-29 17:52:17,484] {_init__.py:51} INFO - Using executor SequentialExecutor

[2018-10-29 {base_task_runner.py:167} INFO - Job 224: Subtask 4-fso-impact [2018-16-29 17:52:17,632] {models.py:258} INFO - Filling up the DagBag from /home/zwtd/airflow/dags/fso-prod-v2.0.py

[2018-10-29 {base_task_runner.py:167} INFO - Job 224: Subtask 4-fso-impact [2018-10-29 17:52:17,653] {cli.py:492} INFO - Running <TaskInstance: fso-prod-v2.0.4-fso-impact 2018-10-29T68:00:00+60:60 [running]> on host
[2018-10-29 7,665] {bash_operator.py:74} INFO - Tmp dir root location:

/tmp.

[2018-10-29 {bash_operator.py:87} INFO - Temporary script location: /tmp/airflowtmpt2mavqdp/4-fso-impact5extxhib

[2018-10-29 {bash_operator.py:97} INFO - Running command:

ulimit -s unlimited && cd /home/zwtd/FSO && SINGULARTTYENV_CURR_DATE-20181029T080000+0000 SINGULARITYENV_NPE-12 singularity exec -e -B china_FSO:/FS03.4 -B china_static:/gjx_static fso3.simg ./scripts/fso_impact.py
[2018-10-29 17:52:17,676] {bash_operator.py:106} INFO - Outpu
[2018-10-29 17:53:48,678] {bash_operator.py:110} INFO - /FS03.4/run/2018102812/obsimpact/rs1.out.0080
[2018-10-29 17:53:45,698] {bash_operator.py:116} INFO - pandas is found ? False

[2018-10-29 {bash_operator.py:110} INFO - Running system on customers machine

[2018-10-29 {bash_operator.py:110} INFO - Current time is 201810281208

[2018-10-29 {bash_operator.py:110} INFO - [*./wrapper_run_fso_v3.4.ksh’, *impact’, '2018102812°, '12°, '12']
[2018-10-29 {bash_operator.py:110} INFO - Found /FS03.4/run/2018102812/cbsimpact/rsl.out.0080

[2018-10-29 17:53:45,740] {bash_operator.py:114} INFO - Command exited with return code @
[2018-10-29 17:53:47,232] {logging mixin.py:95} INFO - [2018-10-29 17:53:47,231] {jobs.py:2612} INFO - Task exited with return code 8

] > v

_images/tb.png
Schema
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public

+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I

List of relations

Name

tb_airep
tb_airepdata
tb_airsr
tb_airsrdata
tb_bogus
tb_bogusdata
tb_buoy
tb_buoydata
tb_geoamv
tb_geoamvdata
tb_gpspw
tb_gpspwdata
tb_gpsref
tb_gpsrefdata
tb_invstat
tb_invtime
tb_metar

_images/obs.png
ZEME SR BTN
(METAR)

EERT
(SOUND)

EERERZLE L
(PROFILER)

£95600014

312034

39314

SR (T« SEPs)
JRE(Q). K (Uv V)

SiE (T) . IEEQ).

K (Us V)

K (U V)

_images/taskdetails.png
‘("Airﬂow DAGs Data Profiling ~ Browse v Admin v Docs v About v 2018-10-29 03:30:58 UTC (cd

on 2018-10-28T08:00:00+00:00

Task Instance Details Task Instances
m Ignore All Di Ignore Task State Ignore Task Deps

_images/tb_surface.png
Tso-> \d tb_surtace
Table "public.tb_surface"

Column | Type | Modifiers

________ e o il
id | bigint | not null default nextval('tb_surface_id_seq'::regclass)
time | bigint | not null

stnid | character(8) | not null

lon | real | not null

lat | real | not null
Indexes:

"tb_surface_pkey" PRIMARY KEY, btree (id)

_images/tb_surfacedata.png
fso-> \d+
Column |

id |
var |
lev |
pres |
obs |
inv |
qc |
error

inc |
Indexes:

"tb_surfacedata_pkey" PRIMARY

tb_surfacedata

Table "public.tb_surfacedata"
| Modifiers | Storage | Stats target | Description

bigint

character varying
integer

real

real

real

integer

real

real

+
|
|
|
|
|
|
|
|
I

not
not
not

null
null
null

+
| plain |
| extended |
| plain |
| plain |
| plain |
| plain |
| plain |
| plain |
| plain |

KEY, btree (id, var, lev)

_images/treeview.png
Ao Airflow DAGs DataProfiling~ Browsev Adminv Docs~ Abo

) DAC:
DAG: fso-prod-v2.0 hedule: 00 08,20

Graph View Wli Task Duration i Task Tries A Landing Times = Gantt

Base date: 2018-10-28 08:00:00 Number of runs: 25 v Go

Details 4 Code £ Refresh

(O BashOperator

Ml success [l running [l failed [skipped [retry [l queued [no status

QIpAg]
(O 5-fso-plot
QO 4-fso-impact
QO 3-esterr
O 2-3-adj-backward
(O.2-2-comp-forcing
O2-1-nl-forecast
O 1-data-assimialtion
O check-ana
O check-obs
O check-icbc

nav.xhtml

 Table of Contents

 		
 FSO 用户指南

 		
 欢迎

 		
 前言

 		
 服务器要求

 		
 可信度

 		
 WRF FSO 简介

 		
 安装

 		
 Airflow安装

 		
 Singularity安装

 		
 运行目录

 		
 教程

 		
 数据准备

 		
 DAG加载

 		
 Airflow启动

 		
 FSO运行流程

 		
 FSO系统网页监控

 		
 FSO结果后处理

 		
 常见故障处理

 		
 常见故障处理

_images/var_surface.png
Surface (2018020900)

-3000000 -2000000 -1000000
Forecast arror contribution (Jika)

o

_images/welcome.gif
SOUND_ALL 2018020900 (59)

|
50°N [~ { |
Cradt S |
40N =,
30N - .
20°N
... B B L |
75°E 90°E 105°E 120°E 135°E

189800 147120 110840 73580 -S780 26780 TSEO0 1310540 147120 183000

_images/var_all.png
All Types (2018020900)

T T T T T T T T T T
-3000000 -2000000 -1000000
Torecast error contribution (ko)

_images/var_sound.png
Sound (2018020900)

-1200000

-1000000 -800000 -600000 -400000
Forecast error contribution (J/kg)

-200000

0

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_images/dags.png
< S oo @ 10.364.44:8080/admin/ Yo = L e

A Airflow DAGs Admin~

Search:
[:] DAG Schedule Owner Recent Tasks @ LastRun @ DAG Runs @ Links
@ fso-prod-v2.0 airflow @O @ 2018-10-28 08:00 @ @O O®* =4EC
G wrf-prod-v2.0 airflow @ 2018-10-28 06:00 @ @ [CR & J =4=EC

Showing 1 to 2 of 2 entries

Hide Paused DAGs

_images/fso_all.png
ALL (2018020900)

sonde_sfc

- soune
_ sutace

— 7T
-12000000 -9000000 -6000000 -3000000 0
Forecast error contribution (J/kg)

_images/FSOWorkflow.png
Oservation — ["\WRF-VAR A",‘;’jm WRE-ARW | e Define
v Data [Forecast || Forecast
Background . | Assimilation Model Accuracy
4
Forecast
Observation Impact Accuracy
g (5P i) ®
Observation Analysis [Gradient
Sensidvity Joi Sensicivigy | - Adioint of of F .
| e [o | WREARY |G [beie
72 | Forecast Forecast
Background Data TL Model Accuracy
Sensiiity (WRF+)
(0F/3x,)

Obs Error Bias Correction
Sensitivity Sensitivity
(6F/56,) OF/3)

_images/WRF-FSO.png
ﬁszﬁ;ﬁ Skt

Wiz (y) Xa (Xfa Xfb)

%’-"ﬁ-% (Xb) - o ﬁ?ﬁ*ﬁﬁ 3
(Xb) (Xt)

DT BURES

BRI R | W] i | EREL pmimg
WS pepE, B4t B

TR
BF

_images/graphview.png
:
| DAG: fso-prod-v2.0 hedule: 00 08,20

Graph View ® Tree View ol Task Duration i Task Tries A Landing Times = Gantt

Details 4 Code £ Refresh

EE== Base date: 2018-10-28 08:00:01 Number of runs: | 25 | Run: backfil_2018-10-27T20:00:00+00:00 v Layout: Left->Right “~ = Go Search for...
skipped no status

1-data-assimialtion 5-fso-plot

_images/FSO-workflow.png
-

~

3 obsproc
RHEH | PmiitE
(/ wrfinput_d0)
GFS#iE 1.ana
L) fs.txxz.N00

wrfinput_d01
(ofs.txxz.f36)

/

fso_prod_V2.0

feit
(oms of, " (e i 08
wRS LR A5 | (12hr-foct R]
N (Xb) Xt)
TRER
EF
St =]
BURRT AR | smEE BRI TR
e FEREIR iR RTE

